RW/BHP/MP/Canal(2)/2024-25 1/4049932/2024

No. RW/BHP/MP/Canal(2)/2024-25

Government of India Ministry of Road Transport & Highways (Chief Engineer - Regional Office, Bhopal)

2nd Floor, Nirman Bhawan, Arera Hills, Bhopal-462011 PH: 0755-2551329, 0755-2571467, Email ID: ro.bpl-morth@gov.in

Date:05.06.2024

Invitation of Public Comments

Subject: Proposal for permission of Canal crossing by Narmada Valley Development Authority (NVDA) Bargi Diversion Projects on NH-943 & NH-39 in the state of Madhya Pradesh

CE(NH), MPPWD, Bhopal vide letter no. N.H/R/Canal Road crossing/NVDA/2024/276 dated 27.05.2024 forwarded therewith a proposal in this office for Permission for Canal crossing by Narmada Valley Development Authority (NVDA) Bargi Diversion Projects on NH-943 & NH-39 in the state of Madhya Pradesh.

- 2. As per Ministry vide OM No. RW/NH-33044/29/2015/S&R(R) dated 22.11.2016, the Highways Administrator will make available the proposal seeking permission for utility laying for public comments for 30 days on ground of public interest.
- 3. In view of the above the comments of public are invited on captioned proposal and the same should reach to below mentioned address within 30 days beyond which no comments will be considered.

The Highways Administration
O/o RO Highways Administration
Ministry of Road Transport & Highways
IInd Floor, Nirman Bhawan, Bhopal-462011.
Email: ro.bpl-morth@gov.in

4. This issues with the approval of Highways Administration-cum Regional Officer, MoRT&H, Bhopal. (Computer no. – 238179)

Signed by Shubham Kaushal Ahirwar Date: 05-06-2024 17:43:07

Assistant Executive Engineer For RO, MoRT&H, Bhopal

Copy to:

- 1. The Senior Technical Director, NIC, Transport Bhawan, New Delhi-110001 for uploading on Ministry's Website.
- 2. The CE (NH), MPPWD, Bhopal-for information.
- 3. The EE(NH), MPPWD Division Rewa-for information and requested to furnish the recommendation in view of Ministry's circular No. RW/NH-33044/29/2015/S&R (R) dated 22.11.2016 along with verified fees viz. license fee etc. as per circular and their detailed calculations

RW/BHP/MP/Canal(2)/2024-25 1/4049932/2024

4. The Executive Engineer, Narmada Vikas Sambhag No. 07, Satna - for information with requested to submit the proposal in view of Ministry's circular no. RW/NH-33044/29/2015/S&R (R) dated 22.11.2016 and submit detailed calculation of license fee, restoration charges etc.

कार्यालय मुख्य अभियंता, OFFICE OF THE CHIEF ENGINEER

राष्ट्रीय राजमार्ग परिक्षेत्र, लोक निर्माण विभाग NATIONAL HIGHWAY ZONE M. P. PUBLIC WORK DEPARTMENT

"निर्माण भवन" प्लाट नं. 27-28 अरेरा हिल्स, भोपाल म.प्र.

NIRMAN BHAWAN 2nd FLOOR, BHOPAL M.P.

Email: cepwdnhzonemp@gmail.com.

Phone/ Fax -0755 -2551570

Memo no. N.H/R/ Canal Road crossing/NVDA/2024

Bhopal, Date

The Chief Engineer-Regional officer Ministry of Road Transport & Highway Nirman Bhawan, Bhopal

by Narmada Valle Sub: Proposal for Permission of NH road Canal crossing Development Authority (NVDA) Bargi Diversion Projects [NH-943, NH-39]

Ref:- Executive Engineer, PWD NH Division Rewa memo no. 261/Tech/EE/2024-25

Dated 15.05.2024

Please refer to the memo cited under reference vide which Executive Engineer, PWD NH Division Rewa has submitted the following proposal for Permission of NH road Canal crossing by Narmada Valley Development Authority {NVDA} Bargi Diversion Projects [NH-943, NH-39] for necessary permission.

S. no.	NH no.	NH crossing at RD	Canal Name
1	943	81+400 M	Nagod Satna Branch Canal
2	39	8025 M	Mohari Distributary
3	39	7100 M	Umarhat Distributary
4	39	1310 M	Reruwa Kalan Minor
5	39	1575 M	Bamurahiya Minor

In view of above, it is requested that the necessary permission of 05 nos.

location of Canal crossing may be granted for subjected work.

Encl: As above (Proposal in Original) Approved by Chief Engineer (NHs)

SUPERENTENDING ENGINEER OFFICE OF THE CHIEF ENGINEER NATIONAL HIGHWAY ZONE M.P.P.W.D BHOPAL

512024

Endt. no. N.H/R/ Canal Road crossing/NVDA/2024 Bhopal, Date /05/2024 Copy is forwarded to,

The Executive Engineer, PWD NH Division Rewa for information. 1.

The Executive Engineer, Narmada Development Division no. 7, Bandhsagar 2. Satna for information.

> OFFICE OF THE CHIEF ENGINEER NATIONAL HIGHWAY ZONE M.P.P.W.D BHOPAL

कार्यालय कार्यपालन यंत्री,

लोक निर्माण विभाग राष्ट्रीय राजमार्ग संभाग रीवा (म.प्र.)

Email.ld: eepwdnhrewa@mp.nic.in

Phone NO .: - 07662-250274

अप ऋ.

261

स्तक./का.यं./2024-25

रीवा, दिनांक. 15 | 01 | 20 14

प्रति.

मख्य अभियंता

लो0नि0वि0 रा0रा0 मार्ग परिक्षेत्र निर्माण भवन भोपाल (म0प्र0)

1999:

नागौद (सतना) शाखा नहर आर.डी. 55.600 से 83.00 अंतर्गत वितरण प्रणाली नहर से रोड क्रासिंग की

अनुमति बावत्।

संदर्भ:-

कार्यपालन यंत्री नर्मदा विकास संभाग क्रमांक 7 सतना बाणसागर सतना म.प्र. का पत्र क्रमांक

719/कार्य/2024/सतना दिनांक 16.04.2024

7/3

उपरोक्त विषयांकित संदर्भित पत्र के संबंध में निवेदन है कि रा0रा0 मार्ग क्र. 39 में आर.डी. 55.600 से 83.00 अंतर्गत नहर सिचाई वितरण प्रणाली से रोड क्रास कर नहर का निर्माण कराये जाने का ड्राइंग, डिजाइन एवं प्राक्कलन अनुमित हेतु प्रस्तुत किया गया है जिसका विवरण निम्नानुसार है :-

27/3/24

क्रमांक	VII No.	NH Chainage	नहर का नाम	NVDA आर डी.	लागत (रु. लाख में)
	2	3	4	5	6
1.	943	56.80	नागौद (सतना) शाखा नहर	81400.00	1,53,23.359.0
2	39	142.40	मौहारी डिस्ट्रिब्ट्री	8025.00	18,10,525.00
3.	39	146.00	उमरहट डिस्ट्रिब्टरी	7100.00	35,07,060.00
4.	39	148.80	रेरूआ कला माइनर	1310.00	13,37,064.00
3	39	140.00	बमुरिहा माइनर	1575.00	15,04,740.00

अतः उपरोक्त नहर शाखा मार्ग क्रासिंग कर निर्माण की अनुमति प्रदाय हेतु सादर संप्रेषित है।

सहपत्र:- उपराकानुसार।

कार्यपालन यंत्री बोक निर्माण विभाग रा.रा. मार्ग संभाग रीवा (म.प्र.)

रीवा, दिनांक.....

प. प्र. /तक,/का.यं./2024-25 प्रतिलिप्

- मुख्य अभियंता क्षेत्रीय अधिकारी सड़क परिवहन एवं राजमार्ग मंत्रालय निर्माण भवन भोपाल (म.प्र.) की ओर सादर सूचनार्थ संप्रेषित।
 - कार्यपालन यंत्री नर्मदा विकास संभाग क्रमांक 7 सतना बाणसागर सतना म.प्र. की ओर सूचनार्थ।

सहपत्र:- शन्य

कार्यपतिन गर्त्री लोक निर्माण विभाग रा.रा. मार्ग

हानमाणावभागरा.स. मा संभागरीवा (म.प्र.)

GOVERNMENT OF MADHYA PRADESH

NARMADA VALLEY DEVELOPMENT AUTHORITY

NAGOD SATNA BRANCH CANAL FROM RD 55.60KM TO 83.00 KM N.H CROSSING AT RD - 81400 M

Prepared & Submitted By:

OFFSHORE INFRASTRUCTURES
LIMITED

Design calculation for NH CROSSING at RD 81400 Mts

1.1 Canal Datas:

Sr.no.	DESCRIPTION	UNIT	PAF	RTICU	LARS
1	Discharge of canal	CUMECS		49.20	2
2	Bed width U/S & D/S	m		4.80	
3	Side Slope Inner		1.5	:	1
4	Outer		2	:	1
5	Full Supply Depth	m		3.8	
6	Velocity	m/sec		1.25	1
7	Bed Slope		1	in	5500
8	Free Board	m		1.00	
9	Mannings 'N'			0.018	3
10	C.B.L.	m	:	340.1	45
11	F.S.L.	m		343.94	45
12	T.B.L	· m		344.94	45
13	Bank Left / Right	m	3.	.5	6.5
14	Nature of Canal			Line	d

2 Bridge Datas:

2.1	Formation Level	m	345.795
2.2	Ground Level	m	345.12
2.3	Clear Span	m	7.00
2.4	Center to Center Span	m	8.20
2.5	No. of Spans	nos	3
2.6	Overall width of roadway	m	30.00
2.7	Angle of Skew		30°
2.8	No. of LANES		4 LANES

N

Sub Engineer N.D. Division No. 7 Satna (M.P.) Assistant Engineer (F-S...)
N.D. Division No. 7
Satna (M.P.)

1.2 Calculation for enlarged Canal Section under Bridge

Formation level = 345.8 (adopted because of surrounding conditions of Ground level is higher than TBL)

Assumptions :-

Thickness of wearing Coat = 0.075 m 7.4.13

Thickness of Slab = 0.775 m As per MOST Publication for solid slab

Thickness of Pier Cap = 75 + 0.02 S mm As per E_in_C Pub No.1 Clause 7.4.16

= 215 mm

= 0.3 m (Provided)

Top Width of Pier = 1.20 m As per E_in_C Pub No.1 Clause 7.4.15

 Hence of level of Bottom of Slab
 =
 344.945 m

 Level of top of pier
 =
 344.645 m

 Height of Pier from F.S.L.
 =
 0.7 m

 Height of pier from C.B.L.
 =
 4.50 m

 width of pier at F.S.L.
 =
 1.20 m

 width of pier at C.B.L.
 =
 1.20 m

Due to construction of piers the water way of the canal will be obstructed and the afflux will be created.

To avoid the afflux the bed width of the canal is increased keeping the side slopes same such that the water way at bridge site remains unchanged i.e. water way is not obstructed at bridge site.

Let enlarge the canal in bottom and provide the pier such that water way restructed by piers is available in rectangular section between piers.

Area obstructed by pier:-

$$= \frac{3.03 + 3.800}{2} \times 1.2 \times 2.00$$

$$= 4.10 \times 2.00$$

$$= 8.196 \text{ m}^2$$

Total obstructed area

- = 8.196
- = 8.196 m^2

water way (Original) of canal.

- = 10.5 x 3.8
- = 39.9 m²

water way reqd. so that the obstuction is not created

- = 39.9 + 8.196
- = 48.096 m²A

```
Let B = width of canal required so that the water way is not obstructed.
```

the enlarged water way

Equating A & B,

BX 3.8 + 21.56 = 48.096

Say 7 n

Keep Enlarged Bedwidth of canal 7 n

By Keeping enlarged bedwith of canal 7 m

water way (Enlarged) of canal.

≖ 48.26 m²

1.3 Fixing the soun:-

vertical clearance = Bottom level of slab - F.S.L.

= 344.945 - 343.945

= 1 m = 1 m Ref. para 7.4.6

Level difference between Bottom of Slab and C.B.L.

: **4.8** п

Inner slope of Canal = 1.5 : 1

Width of canal Opening at R.L 344.945

= 7.00 + 14.4

= 21.40 m.

Providing 3 No.s Spans with clear span of 7.00 m and top width of pier as 1.20 m

2 nos of pier . & 2 PIER Distance between outer faces -

= 21.00 + 2.4

= 23.40 m

Distance of burried abutment from the Canal slope line

 $=\frac{23.4}{2} - \frac{21.4}{2} = 1.00$ m

Hence Wing wall is provided at both ends of abutments.

OFFSHOA A

Sub Engineer N.D. Division No. 7 Satna (M.P.) Assistant Engineer (F-.23.)
N.D. Division No. 7
Satna (M.P.)

1.4 Scour Depth Calculation

(in this case hower the canal is lined scour depth needbe caculated. However calculations are given as below:-

$$d = 0.473 \left[\frac{Q}{f} \right]^{1/3}$$

when d = Normal depth of scour in metres below the H.F.L

Q = discharge in cumecs = 49.202

f = Laceys silt factor = 4.75 for GRAVEL

$$d = 0.473 \left[\frac{49.202}{4.75} \right]^{1/3}$$

= 0.473 x 3.45277

= 1.63316 m

Max Depth of Scour = $2 \times normal depth of scour$

= 2 x 1.63316

= 3.26632

in the present case, FSD = 3.80 m

Hence maximum depth of scour is upto = 3.26632 - 3.80 i.e -0.5337

Hence maximum depth of scour is upto = 390.21 - 3.27 i.e 386.944

m below canal bed. The foundation is provided 2 m below C.B.L.

Hence Safe

1.5 Design of deck slab:-

The design of slab is not done. Its detail are adopted from the MOST publication Standard Plans for High way bridges Vol. II, plate SD/1 175 for Clear span 8 meter as following are the details in the present case:-

1 clear span = 7000 mm

2 Thikness of expansion joints. = 20 mm

3 overall depth of slab = 775 mm

4 Diameter of the bars and spacing will be same but the nos. and length of bars will get changed.

1.7 Design of pier:

As per para 7.4.15 of 7.4.13- E-in-C-70/1 the top width of pier shall be as

- 1.00 m clear span of 6m.
- 1.20 m clear span of 12 m.

in this case, the clear span is = 7 m. Hence the width of pier at top cap is provided

1.20 m and widened as 1.300 mts below 3.00 mt from pier cap.

Hence bearing length of slab at each end of the pier will be

$$=\frac{1}{2}$$
 (120 - 2) $=\frac{118}{2}$ = 59 cm

Depth of pier cap = 75 + 0.02 x 7000 ref para 7.4.16 of 7.4.13- E-in-C-70/1

= 215 mm Say 30 cm

Provide 30cm thik pier cap

but the length of bearing provided is

59 cm > 43 cm

Note: for design purpose max bearing length adopted. is 36 cm, wide 7.4.16 E-in-C-70/17.4.16

1.7.1 <u>Dead Load of Supper Structure</u>

Dead load given in MOST DRG no. BD/2-74 for

7.0 m Clear Span is

96.12 t. It is for

12 m over all width of Slab and

7+0.74

7.74 m c/c span. In present case the

over all width of slab is

12.50 m. And c/c span = 8.18 m.

Hence in this case reaction of dead load

$$= 96.12 X \frac{8.18}{7.74} = 101.58 t$$

1.7.2 Live load

<

The carriage way will carry one lane of class A Vehicle

Impact factor for class A Loading = 4.5 / (6+ 7.40)

= 0.336

Effect of Single lane Class A Loading:-

As shown below Class A Train of Wheel load is moving along the Span of the bridge Refer Sketch below. Two span of the bridge are loaded As per Sketch shown below the reaction at the Central pier will be due to loads on both the span.

if RL = Reaction form left span

if RR = Reaction form Right span

total reaction at Central pier = RL + RR

The maximum reaction on the pier will be obtained by placing the 2nd axis load at A. (Bearing of 36 cm only is Considered for design purpose)

all load are ton and distance in meter

Reaction from Right Hand Span

taking moment about point C.

RR X 7.4 = 11.4 X 7.4 + 11.4 x 6.2 + 6.8 x 1.9
= 84.36 + 70.68 + 12.92
RR X 7.4 = 167.96
RR =
$$\frac{167.96}{7.4}$$

RR = 22.6973 t

Reaction from Left Hand Span

taking moment about point 8.

RL X 7.4 = 2.7 X 3.74 + 2.7 x 4.84 =
$$10.098 + 13.068$$

RL X 7.4 = 23.166

RL = $\frac{23.166}{7.4}$

$$RL = 3.13 t$$

$$= RL + RR$$

$$= 3.13 + 22.6973$$
S.F. = 25.83 t

Note:- If the whole train is shifted by 0.64 m i.e. 11.4 t axie load is placed at RL, then

= 9.72324

Total reaction= 23.787

23.787 tonne

The maximum shear force with impact will be adopted.

1.7.3 Longitudnal eccentricity of live load (i.e. along the road bridge length) maximum eccentric load will be there, when the train of IRC class A vehicle is plased as considered above.

reaction causing eccenticity will be

1.7.4 Transverse eccentricity of live load:

(i.e. across the road bridge) sketch 1.7.4

0.5

1.8

0.15

6.25

12.5

= 8.365 t-m

for I.R.C. Class A vehicle loading will move as above (refer IRC 6-1966 cl 207.1) to give the maximum transverse eccentricity.

Distance of C.G. of live load from the kerb

= 1.30 m

eccentricity of loads from centre of pier

= 6.25 - **1.30** = **4.95** m

maximum live load reaction with impact

= 69.01 t (ref para 1.7.2)

moment due to eccentricity

maximum L.L. reaction with imapct x 4.95 m

= 69.01 x 4.95

= 341.600 t-m

1.8 Braking force: (Refer 214.2 of iRC 6:1966)

it is equal to 20% of load present on the bridge.

Breaking force = 0.2 X 70

impact is not to be considered.

= 14.00 t

the braking force shall act 1.2 m above the road way.

point of application from junction level

= Bearing level - junction level

= 344.95 - 339.05 = 5.9 m

moment = 14×5.9

= 82.6 t-m

1.9 Wind forces:

Since intencity of wind pressure depends on the height of the point above mean retarding surface, two cases for calculation of forces have been cansidered.

1 = When the water in canal is at FSL

2 = When the canal is empty

case 1 - when the water in canal is at FSL

(a) wind force on the live load: (ref. IRC 6-1966 cl. 212.4)

The wind force shall be considerd as acting 1.5 m above the road way and its

value shall taken as 300 kg/linear m.

point of application from junction level

(b) wind forces due to sub & super structure

(Ref. Sketch 1.9)

ltem	Area	Distance of CG. Form F.S.L	AXY
Slab + wearing coat + Parapet	8.18 x 1.85	0.70 + 0.3 + 1.85	29.131
	= 15.133	± 1.925	
Pier Cap	1.2 x 0.3	0.70 + - 0.3	0.306
	= 0.36	= 0.85	
Pier above junction	1.20 x 0.70	0.7	0.294
· · · · · · · · · · · · · · · · · · ·	= 0.84	2 = 0.35	
	sum of A 16.333	Sum of AxY	29.73

Distance of C.G. from
$$=\frac{\sum AY}{\sum A}$$
 = 1.82 m

for 1.95 M height above mean retarding surface the horizontal wind pressure =

(ref. IRC-6-1966 Clause 212.3)

$$= 40 + \frac{52 - 40}{2} \times 1.82$$

$$= 40 + 10.92$$

$$= 50.92 \text{ kg/m}^2$$

wind pressure for 8.18 m length

wind pressure per running meter.

$$= \frac{831.676}{8.18} = 101.67 \text{ kg/m} < 150 \text{ kg/m}$$

As per IRC 6-1966 Clause 212.3 the minimum wind force should b taken as 450kg. Per running meter i/c live load. Hence 150kg/m force instead of 129.27 kg/m

acting at 1.82 m above FSL of canal point or application above junction level

Case II when canal is empty

a. wind force on live load same as in Case I

b. wind force due to sub and super structure:

Item	Area	Distance of CG. Form F.S.L	AXY	
Slab + wearing coat + Parapet	8.18 x 1.85	5.60 + 0.3 + 1.85	103.283	
-	= 15.133	= 6.825		
Pire Cap	1.2 x 0.3	5.6 + 0.3	2.070	
	= 0.36	= 5.75		

Pire above junction	1.20	x 0.7	4.90 + 0.70	4.410
	=	0.84	= 5.25	
pier upto jucntion		1.20 x 3.80	3.80 x 1 2	4.3320
	=	2.28	= 1.9	
	sum of A	18.61	Sum of AxY	114.09

intencity of wind pressure for 7.09m height

$$= 63 + 73 - 73 \times 2$$

$$= 63 + \frac{1172.619}{2}$$
 (IRC 6 para 212.3)
wind force per meter length
$$= \frac{1172.619}{2} = 143.352 \text{ kg} > 150 \text{ kg}$$

8.18

Hence adopt 165.12kg/m run

acting 6.13 m above CBL

point of application above junction level

1.10 forces due to current of water:

case-I when canal is full

the value of v^2 in the equation P=52 K v^2 is assumed to vary linearly from zero at the point of deepest scour to the aquare of th maxmum velocity at the free surface. In present case the canal is lined and max velocity is taken as $2^{(1/2)}$

times the mean velocity. Maximum velocity = $2^{1/2}$ times the maximum mean velocity of current

Maximum velocity = $1.414 \times$

= 1.7689 m/sec

1.251

a. force parallel to the length of pier.

the area on which current pressure will act

$$= \frac{1.20 + 1.2}{2} \times 3.8 = 4.56 \text{ m}^2$$

intensity of water pressure is given by

$$P = 52 \text{ KV}^2 \qquad K = 0.66$$

$$= 52 \text{ x} \qquad 0.66 \text{ x} \qquad 1.76891^2$$

$$= 107.389 \text{ kg/m}^2$$

force on pier = 4.56×107.39

= 489.695 kg

= 0.48969 tonne

Point of application from junction level

moment parallel to length of pier

 $= 0.48969 \times 1.27$

= 0.62191 t-m

b. force perpendicular to length of pier

maximum variaton in the flow direction of water

Ref. IRC 6-1966 CI 213.5

maximum velocity = V Sin 20 = 1.7689 x 0.342

= 0.605 m/sec

20°

Area on which water Pr. Will act.

$$= \frac{16.34 + 16.34}{2} \times 3.8$$

intensity of Pr.

P = 52 KV²

K = 1.5 for square section

$$P = 52 x 1.5 X 0.60497^{2}$$

= 28.547 kg/m²

Force =
$$P \times A$$

= 28.547 X 62.092

= 1772.54 kg

= 1.77254 tonne

point of Application from junction level

= 1.267 m

moment perpendicular to the length of pier

= 1.77254 x 1.267

= 2.24581 t-m

Case II when Canal is empty cross current is nil.

1.11 VERTICAL LOADS AT JUNCTION OF PIER & FOOTING

1.11.1

DEAD LOAD OF WATER AT JUNCTION LEVEL

Cross Section Area at junction level

$$= 15.14 \times 1.20 + 0.785 \times 1.20^{2}$$

$$= 18.168 + 1.1304$$

$$= 19.2984 \text{ m}^{2}$$

Cross Section Area at CBL

Cross Section Area at FSL

value of water over pier upto junction level is nil as pier is straight.

19.30

Volume of pier section between F.S.L & canal bed level

level

Total volume of water displaced by pier upto junction level

upward force due to bouyancy at junction level

1.11.3 Dead weight of pier & pier Cap

a. Pier C.S. area at top = 1.20 x 15.14 + 0.785 x 1.20
2
 = 18.168 + 1.1304
= 19.298 $_{\text{m}^{2}}$ C.S. area at junction level = 19.30 $_{\text{m}^{2}}$ Average C.S. area = $\frac{19.2984 + 19.30}{2}$ = 19.2984 m² Height = 5.6 m

Density of Plain CC = 2.4 t/m^3 Ref. IRC - 6 clause 205(11) Weight of pier Upto Junc = $19.30 \times 4.9 \times 2.4$ Weight of pier Above Junc = $19.2984 \times 0.70 \times 2.4$ = 259.37 t

b. Pier Cap

16.34 + 0.785 x 1.2 ² x 1.2 0.3 volume 6.65 m^3

6.65 2.4 wt. of pier cap

15.96 t

= 275.33 t wt. of pier pier cap

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F. 25...)
N.D.D. Soul Grade

1.14 Checking of pier at foundation level

Properties of the pier section at foundation level moment of inertia along xx axis

$$1xx = \frac{bd^{3}}{12}$$

$$= \frac{17.14 \times 2.40}{12}$$

$$iyy = \frac{db^{3}}{12}$$

$$= \frac{2.40 \times 17.14^{3}}{12}$$

$$= 1007.1 \text{ m}^{4}$$

$$2xx = \frac{1xx}{y/2} = \frac{19.7}{2.40}/2$$

$$= 16.4544 \text{ m}^3$$

$$Zyy = \frac{1yy}{x/2} = \frac{1007.1}{17.14}$$

1.15 Braking Force

point of application form foundation level

1.16 wind force

Case I when Canal Is full

a. Wind force on live load = 2.46 t (Refer para 1.9.0)

point of application form foundation level

Moment =
$$2.5 \times 9.45$$

b. wind force on the sub & super structure

(Refer para 1.9.0 b)

point of application above foundation level

$$=$$
 6.72 + 1.2 = 7.9 m

Moment = 1.227 x 7.9

= 9.71784 t-m

Case II when Canal is empty

- a. Wind force on live load = same as above in case !
- b. wind force on the sub & super structure

wind force = 1.23 t

(Refer para 1.9.0 b)

point of application above foundation level

1.17 Water Current

Case I when Canal full

a. force due to water current parallel to length of pier = 0.48969 t (same as at junction level)

moment = 0.48969×2.47

= 1.20955 t-m

b Moment due water current perpendicular to the length of the pier = 1.77254 t

(same as ti junction level) acting at = 1.267 m above foundation level.

Case II when Canal is empty:-

There will be no water current acting on the pier.

1.18 Buoyancy at foundation level

Case I When canal is full

volume of pier section between FSL & CBL

$$= \frac{19.2984 + 19.2984}{2} \times 3.80$$

volume of first footing = 1.60 x 16.74 x 0.3
= 8.0352
$$M^3$$
(2)
volume of second footing = 2.00 x 17.14 x 0.3

$$= 10.284 \text{ M}^3$$
(3)
volume of Third footing = 2.40 x 17.54 x 0.3
= 12.6288 M³(4)

volume of earth over foundation concrete

total volume of submurged portion pf pier, footing, foundation concrete & earth

sum of (1) to (5) = 111.22 cum which will be created buoyance force of 111.22 t upward

1.19 Dead wieght of water over foundation

1.20 Dead wieght of earth over foundation

weight of earth =
$$6.9384 \times 1.8$$

1.21 Dead wieght of footing & foundation concrete

volume of first footing =
$$1.60 \times 16.74 \times 0.3$$

= $8.0352 \, \text{M}^3 \, \dots (3)$
volume of second footing = $2.00 \times 17.14 \times 0.3$
= $10.284 \, \text{M}^3 \, \dots (4)$
volume of Third footing = $2.40 \times 17.54 \times 0.3$
= $12.6288 \, \text{M}^3 \, \dots (5)$

Total volume of footing & foundation concrete

= 30.948 M³

Dead wieght of footing & foundation concrete =

wt. =
$$30.948 \times 2.3 = 71.1804 t$$

1.22 <u>cheking of stresses at foundation level</u>:

S. No.	item	case I	case II	reference
1	Dead load of superstructure	101.58 t	101.58 t	1.7.1
2	Dead load of pier & pier cap	275.33 t	275.33 t	1.11.3
3	live load reaction	69.01 t	69.01 t	1.7.2
4	weight of water	86.63 t	nil	1.19

Total di	recaioad W	504.999	529.589	
8	Buoyancy (-)	111.2203 t	nil	1.18
7	foundation concrete		1 .	
6	Dead weight of footing &	71.1804 t	71.1804 t	1.21
5	Dead weight of earth	12.48912 t	12.4891 t	1.20

for Max

S. No.	item	case	:1	case	II	reference
1	longitudnal eccentricity	8.365	tm	8.365	tm	1.7.3
2	braking force moment	84.00	tm	84.00	tm	1.15
3	water current perpendicular to length of pier	2.246	tm	nil		1.17(b)
long	itudnal moment Mxx	94.6	11	92.30	55	Ī

for Myy

S. No.	item	case l	case II	reference
1	transverse eccentricity	341.6 tm	341.6 tm	1.7.4
2	wind on live load reaction	23.247 tm	23.247 tm	1.15
3	wind on sub & super structure	9.7 1784 tm	9.0159 tm	1.16(b)
4	water current parallel to length of pier	1.209546 tm	nil	1.17(a)
	transverse moment Myy	375.774	373.86	

$$P = \frac{W}{A} \pm \frac{Mxx}{Zxx} \pm \frac{Myy}{Zyy}$$

$$= \begin{cases} A = 42.096 & m^2 \\ Zxx = 16.4544 & m^3 \\ Zyy = 117.512 & m^3 \end{cases}$$

case 1:

$$P = \frac{504.999}{42.096} \pm \frac{94.611}{16.4544} \pm \frac{375.774}{117.5118}$$
$$= 12 \pm 5.7 \pm 3.197754$$

Pmax =
$$20.944$$
 t/m²
= 2.0944 kg/m² (comp.)

$$Pmin = 3.04873 t/m^2$$

= 0.30487 kg/m² (comp.)

case ii :

$$P = \frac{529.59}{42.10} \pm \frac{92.37}{16.45} \pm \frac{373.86}{117.51}$$
$$= 13 \pm 5.6 \pm 3.2$$

Pmax =
$$21.3754$$
 t/m²
= 2.13754 kg/m² (comp.)

Pmin =
$$3.78562 t/m^2$$

= $0.37856 kg/m^2$ (comp.)

As per iRC 21-2000 for plain cement concrete bridges clause 303.1 table 9, the allowable flexural compressive stress in compression for M-15 grade concrete is 50 kg/cm^2 or 5 Mpa.

As per IRC 21-2000 for plain cement concrete bridges clause 303.3 table 11, the allowable tensile stress for M-15 grade concrete is 4 kg/cm² or 0.4 Mpa.

Hence safe

1.23 CHECK FOR SLIDING ALONG LENGTH OF PIER

Horizontal forces

Case I Canal full

force of water current parallel to length of pier = 0.48969 t (Ref. 1.17 (a)

wind force = 1.23 t (Ref. 1.16(b)

vertical loads = 505.00 t (Ref. 1.22)

sliding force = 1.71969 t a+b

F. S. Against sliding = 505.00 1.71969

= 293.656

Greater than 1.5 (Safe)

(Refer IRC 78-1979 cl.706.2.2)

Case II Canal is empty

vertical load = 529.59 t (Ref. 1.22) sliding forcre due to wind = 1.23 t (same the above)

F.S. = $\frac{-529.59}{1.23}$ = 430.5599 greater than 1.5 (safe)

1.24 Check for sliding across length of pier:

case I Canal full

sliding force = 1.77254 t due to water current (ref. 1.17 (b)

vertical load = 504.999 t (ref. 1.22)

F.S. against sliding =
$$\frac{504.9993}{1.772539}$$
 = 284.9016 > 1.5

Hence Safe

case II Canal empty

there is no force causing sliding.

1.25 chek for overturning (along the length of pier)

case i canal full

a. water current force = 0.489695 t (ref. 1.17 a) point of application is 2.47 m above foundation level.

overturning moment = 0.489695 x 2.47 = 1.209546 tm

b. wind force = 1.227 t

point of application is 7.33 m above foundation level.

{ref. 1.16 b }

overturning moment = 1.227 x 7.33 = 8.99391 tm

c. transverse eccentric load = 69.01 t (ref. 1.7.4) its eccentricity = 4.95 m from centre

or $\frac{17.14}{2}$ - 4.95 = 3.62 m from toe

moment = 69.01 x 3.62 = 249.816 tm (stablising)

d. vertical load acting at centre of pier = 505.00 - 69.01 = 435.989 t

stablising moment = $\frac{435.9893 \times 17.14}{2} = 3736.4 \text{ tm}$

total stablising moment = 3736.4 + 249.816 = 3986.24 tm

total overturning moment = (a+b) = 1.209546 + 8.99391 = 10.20346

factor of safety against over turning = 3986.24 10.2035

= 390.676 > 2

Hence Safe ref. IRC 78-1979 CI 706.2.2)

Case II when canal is empty

a. wind force = 1.227 t acting at 7.92 m above foundation level (ref. 1.16 b)

overturning moment = 1.227 x 7.92 = 9.7 tm

b. Stablising moment due to transverse eccenticity = 249.816 tm same as in case 1

C. Stablising moment due to vertical load acting at centre of pier.

= 3947.16 tm

F. S. Against overturing =
$$\frac{249.8162 + 3947.16}{9.71784}$$

= 431.8836 > 2

Hence Safe

1.26 Check for overturning (Across length of plan)

Case i Canal full

a. water currrent

force = 1.772539 t (ref. 1.17 (b)

Point of application = 2.47 m above foundation level

Over turning moment = 1.772539 x 2.47

= 4.378172 tm

b. vertical loads acting at centre of pier

= 505.00 t

(ignoring longitudinal eccentric load as its effect is negligible)

(ref. 1.22)

stablishing moment =
$$504.9993 \times \frac{2.00}{2}$$

= 504.9993 tm

= 115.3448 > 2

Hence Safe

Case II when Canal is empty

There will be no force causing overturning.

Sub Engineer N.D. Division No. 7 Satna (M.P.) Assistant Engineer (F ...)
N.D. Division No. 7
Satna (M.P.)

	SATNA NAGOD BRANCH CANAL KM				KM.	
<u>.</u>	Abstract of Branch Canal N.	···				
S.No.	Description	Qtγ.	Rate	Unit	Amount	UCSR Ref,
1	2	3	4	5	6	7
1	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 in					1
	Ordinary Soil Depth Up to 3 m.	1612.934	61	Cum	98389	12.11(i)
	Ordinary Rock Depth Up to 3 m.	868.503	77	Cum	66875	12.1 II (i)
2	Providing and laying Plain/Reinforced cement concrete in open foundation including form work shuttering etc. complete as per drawing and technical specifications and as per relevant clauses of sections 1500, 1700 & 2100 with .) PCC GRADE M15	187.868	4617	Cum	867387	12.6
3	Supplying, fitting and placing HYSD bar reinforcement in super- structure complete as per drawing and technical specifications as per relevant clauses of section 1600 FE550	59.939	82810	tonne	4963511	14.4
4	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC GRADE M 20		5674	Cum.	3706949	14.1 (A) (i) 2
5	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC GRADE M 25	688,489	6286	Cum.	4327842	14.1 (B) (i) 2
. 6	Providing and laying Cement concrete wearing coat M-30 grade including reinforcement complete as per drawing and Technical Specifications and as per relevant clauses of sections 1500, 1700 and Clause 2702 of specifications		11685	Cum.	656650	14.6
7	Fillar joint Providing & fixing 20 mm thick compressible fibre board in expansion joint complete as per drawing & Technical Specification.	57.720	26	Rm	1501	14.19 (iV)
8	Providing weep holes in Brick masonry/Plain/Reinforced concrete abutment, wing wall/return wall with 100 mm dia AC pipe, extending through the full width of the structure with slope of 1V:20H towards drawing foce. Complete as per drawing and Technical specifications	113.310	185	Rm	20962	13.9
9	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 inBack Filling in Marshy Foundation Pits	454.214	308	Cum	139898	12.1 (Vi)

S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref.
10	Embankment Construction with Material Obtained from Borrow Pits Construction of embankment with approved material having CBR>7 obtained from borrow pits with all lifts and leads, transporting to site, spreading, grading to required slope and compacting to meet requirement of table 300-1, 300-2 and as per relevent clauses of section-300.	450.000	155	Cum.	69750	3.13
11	Granular Sub-base with Well Graded Material (CBR>30 or more) (Table:- 400-1 & Table 400-2) Construction of granular sub-base by providing well graded material like natural sand crushed gravel or crushed stone having CBR >30, spreading in uniform layers with motor grader on prepared surface, mixing by mix in place method with rotavator or plant mix method at OMC, and compacting with vibratory rollers of 80 to 100 kN static weight to achieve the desired density, complete as per Clause 401 of Specification.	212.035	934	Cum	198040	4.1
12	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	90.000	1347	Cum	121230	4.8 i (a)
13	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	67.500	1250	Cum.	84375	4.8 ii {a}
	Total				15331299	ا مایاء
	Say Add 18% GST		<u> </u>		153.31 27.5963	Lakhs
	Total Amount		180.9093	Lakhs		

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F-33.)
N.D. Division No. 7
Satna (M.P.)

Executive Engineer
N.D. Division No. 7
Satna (M.P.)

·	SATNA NAGOD BRA	<u>NCH C</u>	ANAL I	(M. <u>55.60(</u>	<u>) KM. </u>	TO 83.00) KM.	
	<u> </u>		ESTIM/	ATE				
	BRANC	H CAN	AL N.H.	AT R.D. 81	400 M.			
UCSR Item No.	Item of Work	Item of Work Nos. L B H/D Quantit		Quantity	REMARKS			
12.1	Earth work in excavation of founda specification, including setting out, and other deleterious matter, dress section 300 & 2100 in	AVG. top GL	Excavation G.L.					
.	Pier P1 & P2	4	18.64	3.50	7.08	1846.29	345.120	338.045
	Abutment A1 & A2	4	17.54	3.45	2.62	635.14	345.120	342.496
	Total				1	2481.436		Cum.
1 (1)	Ordinary Soil Depth Up to 4.8 m.					1612.934		Cum.
H (I)	Ordinary Rock Depth Up to 3 m.	-				868.503		Cum.
12.6	Providing and laying Plain/Reinford work shuttering etc. complete as parelevant clauses of sections 1500, 1							
	Pier P1 & P2	4	17.64	2.50	0.10	17.640		
	Abutment A1 & A2	4	16.54	2.45	0.10	16.209		
	Pier P1 & P2 PCC	4	17.54	2.40	0.30	50.515		<u> </u>
	Abutment A1 & A2 PCC	4	16.44	2.35	0.30	46.361	<u> </u>	ļ. <u> </u>
	Approach Pier	4	14.43	0.80	0.20	9.235	<u> </u>	
•	Approach Slab PCC	4	14.43	3.70	0.15	32.035		<u> </u>
	Approach toe wall	4	14.43	0.50	0.55	15.873	<u> </u>	<u> </u>
	Total	<u> </u>				187.868	ļ	Cum.
14.4	Supplying, fitting and placing HYSD drawing and technical specification							
_	Pier P1, P2 & A1, A2	T				5197.590		As per BBS
	Total					5197.590	<u> </u>	Kg.
14.1 (A) (i) 2	Providing and Placing Reinforced/I reinforcement as per drawing and sections 1500, 1700 and 2300 in Re	Technical	Specificati					
	Pier P1, P2 Footing 1	4	17.14	2.00	0.30	41.136		
	Pier P1,P2 Footing 2	4	16.74	1.60	0.30	32.141		
	Abutment A1 & A2	4	16.01	1.95	0.30	37.452		
	Pier P1 .P2 Ractangular	4	15.14	1.20	5.60	406.963		
	Pier (P1 & P 2) Circular Portion area (πr^2)=3.14*0.6*0.6	4	3.14	0.6x0.6	5.60	25.337		
	Abutment A1 & A2	4	15.13	1.33	1.15	92.137		
-	Abutment A1 & A2 top box	4	15.13	1.00	0.30	18.156		
	Total	1	1			653.322		Cum.
14.4	Supplying, fitting and placing HYSI drawing and technical specification							
	Slab & Pier Cap	<u> </u>	1			49024.000		As per 8B
	Approch Slab & wearing coat	1				5716.960		As per BB
· · · · · · · · · · · · · · · · · · ·	Total			Ī		54740.960		Kg.

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F-23..)
N.D. Division No. 7
Satna (M.P.)

UCSR Item No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS	
4.1	Granular Sub-base with Well Grader 400-2) Construction of granular subsand crushed gravel or crushed stone motor grader on prepared surface, naix method at OMC, and compacting achieve the desired density, complete							
	GSB 150mm thick	4	14.43	3.70	0.15	32.035		
	GSB 200 mm thick	1	120.00	7.50	0.20	180.000		
	Total					212.035	Cum	
4.8 i (a)	specific sizes to water bound macad thickness, hand packing, rolling with and camber, applying and brooming the interstices of coarse aggregate, v clause 404 of specification. (i) Grading I (63 to 45 mm) (a) Using							
	Screening Type A (13.2 mm Agg.)	1	120.00	7.50	0.10	90.000		
	Total			<u> </u>	<u> </u>	90.000	Cum	
4.8 ii (a)	Water Bound Macadam Providing, I specific sizes to water bound macad thickness, hand packing, rolling with and camber, applying and brooming the interstices of coarse aggregate, a clause 404 of specification.							
	(ii) Grading II (53 to 22.4 mm) (a) Using Screening Type B (11.2 mm Agg.)	1	120.00	7.50	0.075	67.500		
	Total			i	1	67.500	i Cum	

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F-.23...)
N.D. Division No. 7
Satna (M.P.)

UCSR	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS	
Item No.	Providing and Placing Reinforced/Pro	estresse	d cement (oncrete in super	:-structur	re e/x		
14.1 (B) (i)	sections 1500, 1700 and 2300 in RCC							
	Pier Cap Ractangular Portion	4	15.14	1.30	0.30	23.618		
	Pier Cap Circular Portion	4	3.14	0.65x0.65	0.30	1.593		
	Abutment bed block	¢	15.13	1.00	0.30	18.156		
	Abutment Dirt wall	4	15.13	0.500	0.675	20.426		
ļ	Centre Slab	2	12.50	9.51	0.68	160.481		
-	B/s End Slab Footpath	2	12.50 2.00	9.31 28.17	0.68	314.213 43.044		
	Perapet Wall	2	0.20	28.17	0.64	7.155		
	Crash barrier	4	28.17	Area=.2936	1	33.083		
	Approach Slab	4	14.43	3.70	0.30	64.069		
	Protection wall Total	2	4.91	0.30	0.90	2.651 688.489	Cum	
14.19 (iv)	Fillar joint Providing and filling joint specifications with coarse sand and expension Joint Total	_	•	, -	and tech	57.720 57.720	RM	
14.6	Providing and laying Cement concre complete as per drawing and Techni sections 1500, 1700 and Clause 2702	ical Spec	ifications	and as per releva	_			
	Wearing coat	2	29.33	9.60	0.07	42.235		
	Approach Wearing coat	4	11.08	4.20	0.08	13.961	Cum	
12.1 (Vi)	Total 56.196 Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 inBack Filling in Marshy Foundation Pits							
<u></u>	Pier P1 & P2	4	18.64	2.00	2.00	298.240		
	A1 & A2 Total	4	16.60	1.00	2.35	155.974 454.214	Cum.	
13.9	Providing weep holes in Brick masor wall/return wall with 100 mm dia Al with slope of 1V :20H towards draw specifications	- Cum.						
	Service duct	3	28.17			84.510		
	Weep Hole Total	24	1.20			28.800 113.310	RM	
	IVIAI	15291						
3.13	Embankment Construction with Material Obtained from Borrow Pits Construction of embankment with approved material having CBR>7 obtained from borrow pits with all lifts and leads, transporting to site, spreading, grading to required slope and compacting to meet requirement of table 300-1, 300-2 and as per relevent clauses of section-300.							
	Embankment Construction	1	120.00	12.50	0.30	450.000		
	Total	1	J	<u>l</u>	<u> </u>	450.000	Cum	

GOVERNMENT OF MADHYA PRADESH

NARMADA VALLEY DEVELOPMENT AUTHORITY

BARGI DIVERSON PROJECT

NAGOD SATNA BRANCH CANAL FROM RD 55.600KM TO RD 83.00KM INCLUDING DISTRIBUTION SYSTEM

MOHARI DY N.H. CROSSING AT RD - 8025 M OFFTAKE FROM 59375 M OF N.S.B.C.

Prepared & Submitted By:

OFFSHORE INFRASTRUCTURES
LIMITED, MUMBAI

Design of MOHARI DY N.H. CROSSING AT RD - 8025 M

CAN	AL DATA:				
1	Full Supply Discharge		(Q)	=	1.1836 Cumed
2	Bed Width		(B.W.)	=	0.8 M
3	Full Supply Depth		(F.S.D.)	=	0.75 M
4	Free Board		(F.B.)	=	0.50 M
5	Top Width of Bank:	Left		=	1.50 M
		Right		=	1.50 M
6	Bed Slope			=	1 in 1100
7	Side Slope :	Inner Slope	(1)	=	1.50:1
		Outer Slope	(0)	=	2.00:1
8	Velocity		(V)	=	0.927 M/Sec
9	Manning's "N"	Lined	(n)	=	0.018
		Unlined	(n)	=	0.025
10	Canal Bed Level		(C.B.L.)	=	328.506 M
11	Full Supply Level		(F.S.L.)	=	329.256 M
12	Top Bank Level		(T.B.L.)	=	329.756 M
BRID	GE DATA :-				
1	Formation Level		(F.R.L.)	=	329.600 M
2	Ground Level		(G.L.)	=	329.300 M
3	Clear Width of Roadway			=	29.1 M
4	Pipe Length			=	30 M
5	Extra Beam Width			=	0.000 M
6	Extra Beam Height			=	0.000 M
7	Extra Beam Length			=	0.000 M
8	Extra Beam Rest on Pipe			=	0.000 M
9	Overall Length			=	30.000 M
10	Pipe Invert Level in U/s			=	327.006 M
11	Pipe Invert Level in D/s			=	326.964 M
12	D/s CBL		(C.B.L.)	=	328.406 M
13	D/s FSL		(F.S.L.)	=	329.156 M
14	D/s TBL		(T.B.L.)	=	329.656 M
15	BT RL			=	325.81 M

DESIGN OF PIPE FOR DISCHARGE :-

1.20

X- sectional area of C	anal water way		
Bed Width		=	0.80 M
Full Supply Dep	th	=	0.75 M
Water way	(A)	=	$(0.8 + 1.5 \times 0.75) \times 0.75$
			1.44 Sq mts
Velocity	Vi	-	0.927 M/Sec
Water in pipe will rui	as open channel flow		

Assume diameter of pipe = 1.20 M

Hence X- sectional area of one pipe = 1.130 SqM

Manning's rougosity coefficient for RCC Pipe = 0.016

The pipe invert level in u/s = CBL - Depression of pipe = 328.506 - 1.5 = 327.006 M

(C.B.L.) = 328.506 M (F.S.L.) = 329.256 M

> Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F-.14..)
N.D. Division No. 7
Satna (M.P.)

Hence net area of one pipe = Total Area 1.130 1.130 sqm No. of rows of pipe = 1 By providing one row of pipe, X- sectional area = 1.130 sgm Full Supply Discharge = Hence Velocity through pipe to pass full discharge V₂ = (1.1836 / 1.13) 1.047 M/Sec Total perimeter of one pipe $2\pi r$ 3.77 M 3.77 M Hydraulic mean depth of pipe not running full A/P (1.13 / 3.77)R 0.300 M 0.448 R^{2/3} (V x n) Slope 1.047 x 0.016 0.448 Slope 0.0014 Say 714 1 in 30.00 M 30.00 714 0.042 M Drop in plpe

Length of Pipe

HEAD LOSS :-

3.1.2 Head Loss C Highest value of the following two is adopted

 $(1+f_1+f_2*L/R)V^2$ (1) By unwins for = 0.505 & = a(1+b/R)wher∈= where a & b are as follows (5.11© E-In-C70/1) 0.00316 b = 0.03For concrete R :A/P 0.300 m f2 = #REF! 0.0035 Length ofPipe 30,000 1 + 0.505+0.0035 x (30/0.3) x & her 1.05 2 x 9.81 0.1040 m Head loss as per drop of canal 30 / 714 0.042 M Provided Head Loss in Lsec Difference in head loss calculated and provided 0.104-0.042

As there is provision of 0.1m head loss in canal L-section, Hence OK .

SCOUR DEPTH :-

In this case however the canal is lined scour depth need not be calculated. However calculations are given as below:-

When :-

 $d = 1.34 \left(\frac{D_b^2}{K_{af}} \right)^{3/2}$

 \dot{a}_{sm} = Mean Depth of Scour

D_b = The design Discharge for Foundation per Meter width of effective waterway.

K_{sf} = Silt Factor fro a representative sample of bed material obtained up to the level of anticipated deepest scour

 $K_{sf} = 1.76 \overline{d_m}$

d_m = Weighted mean diameter in mm.

Particle Size = Heavy Sand

 $d_{m} = 1.29$ $K_{sf} = 1.999$ $D_{b} = 0.388$

for Abutment

 $d = 1.34 \frac{0.388 \times 0.388}{1.999} = 0.422 \text{ M}$ $D_{m}) = 1.27 \times d_{sm} = 1.27 \times 0.422 = 0.54 \text{ M}$

Max Scour Depth (D_m) = 1.27 x d_{sm} = 1.27 x d_{sm} = 329.256 M

Hence,

Maximum depth of sour is up to = 329.256 - 0.54 = 328.720 M

Below G.L. the foundation is provided 1.00 M below G.L. = 328.300 M

Below Canal Bed, the foundation is provided 1.20 M below INVERT LE = 325.806 M

Foundation Level of Head Wall = 325.806 M

Hence Safe

DESIGN OF HEAD WALL-

The design of Head wall is not done. Its width has been adopted as per chart for wing walls in E-in-C publication 70/1

1 Effective height of wall up to top of foundation level

329.6 - 326.106 3.494 M

2 B/H factor as per E in C publication

3.494 N 0.65

3 B/H Angle

26.84°

4 Width required

2.27 M

5 Width provided

2.3 M

DESIGN OF WELL IN U/S:

Area of waterway

= 1.440 Sqm

Area required for well

= 1.25 x Area of waterway

= 1.

1.25 x 1.440 1.800 sqm

Min. distance required of fall wall

= 1.25D + (h/4)

As per E-in-C 70/1

(4)

where, D

= Depth of Water

= CBL of canal -U/S invert level of pipe

(1.80)

D

h

0.75 m

328.506 - 326.706

= 1.80 m

Min. distance required of fall wall

1.80 m

(1.25 × 0.8) + 1.39 m

Dia. of well provided = width of pipe

= 3.00 m

Area of well provided

= 3.14 x 3.0 ²

4 x 2 3.53 Sqm stance of well wall from U/s = 1.50 + 0.50 = 2.00 m > 1.39 m HENCE OK

Depth of water cushion

& remaining floor thickness with C.C. 1:3:6 =

Provide depth of water cushion with R.C.C. floor = 0.30 m

Foundation level of U/S well = U/S Invert level of pipe - water cushion - Floor thickness of well

= 327.006 -0.30 -0.30 -0.30 = 326.106 m

0.30 m

Provide Foundation level of well = 327.006 - 1.20 (1.20m below pipe invert)

Provide Foundation level of well = 325.806 m

DESIG OF NOTCH: Providing Trapezoidal type notch

X(WATER DEPTH) -3/2 **Notch Width** 0.224 X Q 0.221 x 41.80 x 2.48 -3/2 2.37 0.72 0.8 m say th of Notch Bottom width of notch + 2d' TAN α 2.62 +2 x 2.48 X M Q -5/2 +2 x 2.48 x 0.055 2.62 x42 x x 2.48 3.81 feet 1.16 1.2

pitching in outer slope of canal is to be provided.

scharge through not = 4.46 X notch width x FSD 1.5 = 4.46 x 2.62 x 2.48 1.5 = 1.29 cumecs > 1.184 cumecs

Sub Engineer
N.D. Division No. 7
Satna (M.P.)

Assistant Engineer (F-..4..)
N.D. Division No. 7
Satna (M.P.)

	Abstract of Mohari Disty N	H. AT R.	D. 8025	M.		
S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref.
1	2	ŝ	4	5	6	7
1	Each pork in convacion of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 in					
	Ordinary Soil Depth Up to 3 m.	421.996	61	Cum	25742	12.1 l (i)
2	Providing and laying Plain/Reinforced cement concrete in open foundation including form work shuttering etc. complete as per drawing and technical specifications and as per relevant clauses of sections 1500, 1700 & 2100 with .) PCC GRADE M15	144.803	4617	Cum	668554	12.6
3	Supplying, fitting and placing HYSD bar reinforcement in super- structure complete as per drawing and technical specifications as per relevant clauses of section 1600 FE550	2.590	82810	tonne	214441	14.4
4	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC GRADE M 20	3.770	5674	Cum.	21393	14.1 (A) (i
5	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC GRADE M 25	31.879	6286	Cum.	200393	14.1 (B) (
6	Providing weep holes in Brick masonry/Plain/Reinforced concrete abutment, wing wall/return wall with 100 mm dia AC pipe, extending through the full width of the structure with slope of 1V:20H towards drawing foce. Complete as per drawing and Technical specifications	7.200	185	Rm	1332	13.9
7	Providing and Laying Reinforced Cement Concrete Pipe NP4/prestrssed concrete pipe on first class bedding in single row. Providing and Laying Reinforced cement concrete pipe NP4/prestrssed concrete pipe for culverts on first class bedding of granular material (cost of bedding included) in single row including fixing collar with cement mortar 1:2 but excluding excavation, protection works, backfilling, concrete and masonry works in head walls and parapets. 1200 mm Dia Pipe	30.000	9544	Rm	286320	9.2 B
8	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 inBack Filling in Marshy Foundation Pits	73.985	308	Cum	22788	12.1 (V

					21.3642	Lakhs
	Add 18% GST				3.2589	
	Say				18.11	Lakhs
	Total				1810525	1,415.
12	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	56.250	1250	Cum.	70313	4.8 ii (a)
11	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	75.000	1347	Cum	101025	4.8 i (a)
10	table 300-1, 300-2 and as per relevent clauses of section-300. Granular Sub-base with Well Graded Material (CBR>30 or more) (Table:- 400-1 & Table 400-2) Construction of granular sub-base by providing well graded material like natural sand crushed gravel or crushed stone having CBR >30, spreading in uniform layers with motor grader on prepared surface, mixing by mix in place method with rotavator or plant mix method at OMC, and compacting with vibratory rollers of 80 to 100 kN static weight to achieve the desired density, complete as per Clause 401 of Specification.	150.000	934	Cum	140100	4.1
9	Embankment Construction with Material Obtained from Borrow Pits Construction of embankment with approved material having CBR>7 obtained from borrow pits with all lifts and leads, transporting to site, spreading, grading to required slope and compacting to meet requirement of	375.000	155	Cum.	58125	3.13

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F....)

N.D. Division No. 7

Satna (M.P.)

Executive Engineer
N.D. Division No. 7
Satna (M.P.)

	SATNA NAGOD BRAN	ICH C			IVI. I	0 83.00	KIVI.			
	MOHAT	ol Die.	ESTIM.	AT R.D. 8025	NA.					
UCSR							250	** DVC		
tem No.	Item of Work	Nos.	L	В	H/D	Quantity	REN	MARKS		
12.1	Earth work in excavation of foundation including setting out, construction of sideleterious matter, dressing of sides are in	noring a	nd bracing	, removal of stump	s and otl	her	AVG. top	Excavation G.L.		
	Head Wall U/S	1	6.55	2.70	3.59	63.56	329.300	325.706		
	Well Wall U/S	1	3.14	3.85	3.49	42.27	329.300	325.806		
	Head Wall D/S	1	6.55	2.70	3.59	63.56	329.300	325.706		
	Well Wall D/S	1	3.14	3.85	3.49	42.27	329.300	325.806		
	Pipe Barral	1	25.00	3.04	2.72	206.45	329.300	326.584		
	U/s Key wall	1	2.10	0.60	1.49	1.88	329.300	327.806		
	D/s Key wall	1	2.10	0.60	1.59	2.01	329.300	327.706		
	Total	-	2.20	0.00		421.996		Cum.		
1 (i)	Ordinary Soil Depth Up to 3 m.					421.996		Cum.		
12.6	Providing and laying Plain/Reinforced cement concrete in open foundation including form work shuttering etc. complete as per drawing and technical specifications and as per relevant clauses of sections 1500, 1700 & 2100 with .) PCC GRADE M15									
	Head Wall U/S	1	5.55	2.70	0.10	1.499				
	Head Wall D/S	1	5.55	2.70	0.10	1.499				
	Pipe Barral	1	26.03	2.04	0.30	15.932				
Pier	Head Wall U/S 1 Step	1	5.45	2.60	0.30	4.251				
	Head Wall U/S 2 Step	1	5.150	(0.525+2.300)/2	3.494	25.42				
	Pipe Deduction in Head wall U/s	-1	1.540	Area=1.629		-2.508				
	Head Wall D/S 1 Step	1	5.45	2.60	0.30	4.251				
	Head Wall D/S 2 Step	1	5.150	(0.525+2.300)/2	3.494	25.42				
	Pipe Deduction in Head wall D/s	-1	1.540	Area=1.629		-2.508		L-II-C		
T. T. F.	Half Pipe Barral	1	26.51	2.04	0.520	28.123				
	Deduct Pipe in half cradel concrerte	-1	26.51	Area=0.530		-14.051				
	Coller Joint	11	2.04	0.30	1.220	8.213				
	Deduct Pipe Barral	-11	0.30	Area=1.255		-4.142				
	Parapet kerb	2	5.15	0.53	0.23	1.217				
	Perapet Wall	2	5.15	0.30	0.68	2.09				
	U/s & D/s well wall Circular pcc	2	3.14	5.61	0.30	10.58				
	U/s & D/s well wall Lift	2	6.28	0.93	3.38	39.24				
					ALC: Harrison					
	U/s & D/s Notch deduction inwell wall Lift	-2	0.50	1.00	0.75	-0.75				
	U/s & D/s Notch deduction inwell	-2 2	0.50 2.10 1.80	0.60 0.30	0.75 0.20 0.50	-0.75 0.50 0.54				

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F-...)

N.D. Division No. 7

Satna (M.P.)

14.4	Supplying, fitting and placing HYSD bar drawing and technical specifications as					, per	
	Head Wall						
	Main Bar 10 MM Dia @ 200 mm	26	4.614		0.617	74.02	
	Disty Bar 8 MM Dia @ 200 mm	23	5.08		0.395	46.15	
	Total					120.17	
	2 Nos Headwall		-			240.34	
	Slab						
	Main Bar 12 MM Dia @ 150 mm	384	3.212		0.888	1095.27	
	Disty Bar 12 MM Dia @ 300 mm	22	28.72		0.888	561.07	
	Crash Barrier		20.72		-		
	Main Bar 12 MM Dia @ 150 mm	20	3.104		0.888	55.13	
	Main Bar 12 MM Dia @ 150 mm	20	1.93		0.888	34.28	
	Disty Bar 10 MM Dia @ 150 mm	18	2.79		0.617	30.99	
	Total	10	2.75		0.027	120.39	
	2 Nos Crash Barrier			7 THE 12 TO 18		240.78	
	Wearing coat					2100	
	Main Bar 8 MM Dia @ 200 mm	15	8.32		0.395	49.30	
	Disty Bar 8 MM Dia @ 200 mm	43	2.75		0.395	46.71	
	Total	43	2.73		0.555	96.00	
	2 Nos Wearing coat					192.01	
	U/s & D/s well						
	Main Bar 10 MM Dia @ 300 mm	22	3.60		0.617	48.80	
	Disty Bar 8 MM Dia @ 300 mm	12	6.184		0.395	29.31	
	Main Bar 12 MM Dia @ 300 mm	18	2.044		0.888	32.67	
	Disty Bar 12 MM Dia @ 300 mm	18	1.205		0.888	19.26	
	Total	-				130.04	
	2 Nos Well Wall				W-1	260.09	
	Grand Total					2589.553	Kg.
4.1 (A) (i) 2	Providing and Placing Reinforced/Preserinforcement as per drawing and Tec 1500, 1700 and 2300 in RCC GRADE N	chnical S					
	U/s RCC Flooring of well	1	3.14	2.000	0.300	1.89	
	D/s RCC Flooring of well	1	3.14	2.000	0.300	1.89	
. 57	Total					3.770	Cum.
4.1 (B) (i) 2	Providing and Placing Reinforced/Pre- reinforcement as per drawing and Ter 1500, 1700 and 2300 in RCC GRADE N	chnical S					
2	Top Slab	1	3.04	28.80	0.30	26.264	
	Crash barrier	2	3.04	Area=.2936		1.785	
PERMIT	Wearing coat	2	3.04	8.40	0.07	3.830	

9.2(B)	class bedding in single row. Providing NP4/prestrssed concrete pipe for culv bedding included) in single row includexcavation, protection works, backfillingarapets.	erts on fing fixing	irst class bedo collar with c	ding of granula ement mortar	ar material 1:2 but ex	cluding	
	1200 MM Dia NP4 PIPe	12	2.50			30.000	RM.
13.9	Providing weep holes in Brick masonr wall with 100 mm dia AC pipe, extend :20H towards drawing foce. Complete	ling thro	igh the full w	idth of the str	ucture with	The state of the s	
	Weep Hole	8	0.90			7.200	
	Total		0.50			7.200	RM
2.1 (Vi)	deleterious matter, dressing of sides a inBack Filling in Marshy Foundation Pi Head Wall U/S		om as per rele	0.99	3.19	15.156	
	Head Wall D/S	1	4.81	0.99	3.19	15.156	
	Pipe Barral	1	1.00	25.10	1.74	43.674	
	Murrum filling	1	2.04	28.18	0.98	56.101	
	Total					73.985	Cum.
3.13	Embankment Construction with Mate Construction of embankment with ap with all lifts and leads, transporting to	proved r	naterial havin eading, gradi	g CBR>7 obtaing to required	slope and	compacting	
3.13	Construction of embankment with ap with all lifts and leads, transporting to meet requirement of table 300-1,	proved r	ined from Bo naterial havin reading, gradi d as per relev	g CBR>7 obtaing to required ent clauses of	I slope and section-30	compacting 0.	
3.13	Construction of embankment with ap with all lifts and leads, transporting to to meet requirement of table 300-1, Embankment Construction	proved r	ined from Bo naterial havin eading, gradi	g CBR>7 obtaing to required	slope and	compacting 0. 375.000	
3.13	Construction of embankment with ap with all lifts and leads, transporting to to meet requirement of table 300-1, Embankment Construction Total	prial Obta proved r site, spr 300-2 an	naterial havin reading, gradi d as per relev	g CBR>7 obtaing to required ent clauses of 12.50	slope and section-30	375.000 375.000	Cum
4.1	Construction of embankment with ap with all lifts and leads, transporting to to meet requirement of table 300-1, in the second of the second o	proved rosite, spro 300-2 and 1 Materia providing 30, spreadace methological	ined from Bo naterial havin reading, gradi d as per relev 100.00 I (CBR>30 or g well graded dding in unifor od with rotav 100 kN statio	g CBR>7 obtaing to required ent clauses of 12.50 more) (Table: material like images with vator or plant	0.30 0.30 0.400-1 & The natural same motor gradmix method	375.000 375.000 Table 400-2) d crushed der on d at OMC, esired	Cum
	Construction of embankment with ap with all lifts and leads, transporting to to meet requirement of table 300-1, in the second of the second o	proved rosite, spro 300-2 and 1 Materia providing 30, spreadace methological	ined from Bo naterial havin reading, gradi d as per relev 100.00 I (CBR>30 or g well graded dding in unifor od with rotav 100 kN statio	g CBR>7 obtaing to required ent clauses of 12.50 more) (Table: material like images with vator or plant	0.30 0.30 0.400-1 & The natural same motor gradmix method	375.000 375.000 Table 400-2) d crushed der on d at OMC, esired	
	Construction of embankment with ap with all lifts and leads, transporting to to meet requirement of table 300-1, in the construction Total Granular Sub-base with Well Graded Construction of granular sub-base by gravel or crushed stone having CBR > prepared surface, mixing by mix in pland compacting with vibratory rollers density, complete as per Clause 401 of GSB 200 mm thick Total	I Materia providin 30, sprea ace meth s of 80 to of Specifi	ined from Bo naterial havin reading, gradi d as per relev 100.00 1 (CBR>30 or g well graded ding in unifor od with rotav 100 kN static cation.	g CBR>7 obtaing to required ent clauses of 12.50 more) (Table: material like imagers with vator or plant is weight to ach	0.30 0.30 0.400-1 & The natural same motor gradmix method nieve the december of the december o	375.000 375.000 375.000 Table 400-2) d crushed der on d at OMC, esired	Cum
	Construction of embankment with ap with all lifts and leads, transporting to to meet requirement of table 300-1, in the second of the second o	I Materia providing 30, spreadace methors of 80 to of Specifical s	ined from Bo naterial havin reading, gradi d as per relev 100.00 1 (CBR>30 or g well graded ding in unifor od with rotav 100 kN static cation. 100.00 eading and co ication includ 0 tonnes in staning/ binding	g CBR>7 obtaing to required ent clauses of 12.50 more) (Table: material like images with vator or plant is weight to achieve the compacting storing spreading ages to proper Materials to its materials mater	0.30 0.30 0.400-1 & The stural same motor grade mix methodolieve the deliberation of the students of the stude	375.000 375.000 375.000 Table 400-2) d crushed der on d at OMC, esired 150.000 150.000 tes of thickness, camber, nterstices of	
4.1	Construction of embankment with ap with all lifts and leads, transporting to to meet requirement of table 300-1, in the meet r	I Materia providing 30, spreadace methors of 80 to of Specifical s	ined from Bo naterial havin reading, gradi d as per relev 100.00 1 (CBR>30 or g well graded ding in unifor od with rotav 100 kN static cation. 100.00 eading and co ication includ 0 tonnes in staning/ binding	g CBR>7 obtaing to required ent clauses of 12.50 more) (Table: material like images with vator or plant is weight to achieve the compacting storing spreading ages to proper Materials to its materials mater	0.30 0.30 0.400-1 & The stural same motor grade mix methodolieve the deliberation of the students of the stude	375.000 375.000 375.000 Table 400-2) d crushed der on d at OMC, esired 150.000 150.000 tes of thickness, camber, nterstices of	

4.8 ii (a)	Water Bound Macadam Providing, lay specific sizes to water bound macadar hand packing, rolling with vibratory roapplying and brooming requisite type coarse aggregate, watering and comp specification.	hickness, camber, terstices of					
	(ii) Grading II (53 to 22.4 mm) (a) Using Screening Type B (11.2 mm Agg.)	1	100.00	7.50	0.075	56.250	
	Total	-				56.250	Cum

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F-....)

N.D. Division No. 7

Satna (M.P.)

GOVERNMENT OF MADHYA PRADESH

NARMADA VALLEY DEVELOPMENT <u>AUTHORITY</u>

BARGI DIVERSON PROJECT

NAGOD SATNA BRANCH CANAL FROM RD 55.00 KM TO RD 83.00 KM INCLUDING DISTRIBUTION SYSTEM OF BARGI DIVERSION PROJECT

NH CROSSING AT RD 7100 M UMARHAT DISTY OFFTAKE FROM 60125 M OF N.S.B.C FROM RD 55.00KM TO 83.00KM

Prepared & Submitted By:

OFFSHORE INFRASTRUCTURES
LIMITED, MUMBAI

DESIGN OF NH CROSSING AT RD 7100 OF UMARHATDISTRIBUTARY CANAL DATA

1	Full Supply Discharge (Design Discharge)	Q	=	3.1865 Cumeos
2	Bed Width	BW	=	1.05 M
3	Full Supply Depth	FSD	=	1 M
4	Free Board	FB	=	0.6 M
5	Canal Side Slope	SS	=	1.5 :1
6	Canal Bed Slope	BS	=	1 in 700
7	Velocity	V	=	1.406 M/Sec.
8	Value Of 'N'	N	=	0.018
9	Top Width Of Bank's	R/L	=	1.5 4 M
10	Canal Bed Level	CBL	=	338.749 M
11	Full Supply Level	FSL	=	339.749 M
12	T.B.L.	TBL	=	340.349 M
13	Ground Level	GL	=	338.234 M

BRIDGE DATA

1	Type of Structure	=	R.C.C. Barrel Type			
2	Angle of Crossing	-	90 Degre		e	
3	Nos. Of Barrel	-	= 1 No			
4	Size of Barrel	=	2	X	1.8	M
5	Formation Level	=	339.200 M		M	
6	Length of Barrel	-		30	M	
7	Free Board in Barrel	=		0.8	M	

Sub Engineer N.D. Division No. 7 Sana (M.P.) Assistant Engineer (F-23...)
N.D. Division No. 7
Satna (M.P.)

Sub Engineer N.D. Division No. 7 Satna (M.P.)

HYDRAULIC DESIGN:

(1) Suitability of the Structure:

Canal bed level 338.749 m FSL of canal 339.749 m 339.200 m Formation Level

Hence a canal syphon is proposed.

(2) Canal waterway and size of pipes:

Discharge	=	3.18/	Cumecs				
Max. velocity from Barrel		=	4.0 m/sec				
Area required	ired = 0.797 Sqm		Sqm				
Providing RCC Barrel Size Of	=	2.00	x	1.80			
Haunch size	=	0.20	x	0.20	M		
Thickness of Barrel	=	0.30	M				
Open Area of one Barrel is	=	2x1.8-4 x (1/2x 0.2x0.2)					
	=	3.58					
No.s Of Barrel Provided	=	1					
Actual area of waterway		=	3.580	Sqm .			
Total wetted perimeter		-	7.120) m			
Hydraulic mean radius R		=	0.503	m			
Actual Velocity		=	0.89	m/sec			
		<	3.00	m/sec			

 $1/n \times R^{2/3} \times S^{1/2}$ Velocity 0.632 x 0.89 0.018 0.00064 S S 1 in 1556.9 = 1 in 1550 Say = Top level of barrel at centre 339.100 m Say 339.100 m

Top of barrel - Thickness of Barrel - Depth of Barrel Top level of barrel at centre =

339.100 - 0.300 - 1.800

337.000 m

Total length of Structure 30.00 m

Calculation For Losses (E)

Head Loss Calculation:-

By unwins formula, Hf $(1+f_1+f_2*L/R)V^2$ (1)

2g

where f1= 0.505 & f2 = a(1+b/R)

0.03

where a & b are as follows (Para 5.11 of E-In-C70/1 Publication)

For concrete surface a = 0.00316 and

area of one Barrel 3.58 Sq Mts perimeter of barrel 7.120 Mts

335.510 m(II)

335.510 m

Foundation level of Wingwall

Foundation is kept at minimum of (I), (II) =

DESIG OF NOTCH: Providing Trapezoidal type notch

Notch	Width	= (0.224 X Q	X(WATER	DEPTH)	-3/2	
		=	0.221 x 1	12.53	x 3.30	-3/2	
		=	4.15	feet			
		=	1.27	m			
	say	=	1.35	m			
:h of Notch	=	Bottom wi	dth of notch	+ 2d' TAN	α		
	=	4.43	+2 x 3.30		XMQd'	-5/2	
	=	4.43	+2 x 3.30	x 0.055	x 112.5 x	x 3.30	-5/2
	=	6.50	feet				
	=	1.98	m				
	=	2	m				
pitching in o	outer slope of	canal is to be pro	vided.				
charge thro	ugh no	-	4.46 X notch	width x	FSD	1.5	
		=	4.46 x	4.43 x	3.30	0 1.5	

3.352

3.187

OFFSHORE ON THE STRUCTURES

Sub Engineer N.D. Division No. 7 Satna (M.P.)

cumecs

cumecs

Assistant Engineer (F-23...)
N.D. Division No. 7
Satna (M.P.)

RCC BOX CULVERT, DESIGNATION

SAILENT FEATURES

1 BOX SIZE	2.00 X 1.80
2 TOP SLAB THICKNESS	0.30 M
3 BOTTOM SLAB THICKNESS	0.30 M
4 SIDE WALL THICKNESS	0.30 M
5 UNIT WEIGHT OF CONCRETE	24 KN/m3
6 UNIT WEIGHT OF EARTH	18 KN/m3
7 UNIT WEIGHT OF WATER	10 KN/m3
8 COEFFICIENT OF EARTH PRESSURE	0.5
9 TOTAL CUSHION ON TOP	5.0 M
10 THICKNESS OF WEARING COAT	0.07 M
11 CARRIAGEWAY	8 LANE DIVIDED
12 CONCRETE GRADE	M25 = 25 MPA
13 STEEL GRADE	FE415 = 415 MPA
14 σSC	8.33 MPA
15 σST	230 MPA
16 n (FOR DEPTH OF NEUTRAL AXIS)	0.294
17 k (FOR MOMENT OF RESISTANCE)	1.105 MPA
18 j (FOR EFFECTIVE DEPTH)	0.902
19 No of Barrel	1

CROSS SECTION OF BOX(IN M)

Sub Engineer N.D. Division No. 7 Satna (M.P.) Assistant Engineer (F-23..)
N.D. Division No. 7
Satna (M.P.)

LOAD CALCULATION

2.1 TOP SLAB

2.1.1 DEAD LOAD

a	cushion =	0.1	×	18	=	1.8	kn/m3
b	self wt. of top slab =	0.30	X	24	=	7.2	kn/m3
C.	TOTAL				=	9	kn/m3

2.1.2 LIVE LOAD

consider moving load of 70R (T). The dispersal and position of load shall be as under:

Note:

- 1 Since the length of wheel is more than total width of box at top that is 3.84 m further dispersal by "2d" shall not be possible, hence not taken. In case where the length of load is less than the width of box but works out more when
- 2 As the load of wheel after dispersal does not overlap, both wheels need to be taken separately.
- 3 For dispersal refer IRC:21-2000 Clause305.16.3.
- 4 Impact as per IRC:6-2000 Clause 211 shall betaken.
- 5 This shall be the load when α is zero and live loadis taken to disperse through wearing coat only. loads per unit area when 2 track load (covering 4- lanes) is considered

= 350/4.77 x 1.04 = 70.55 kN/m2

Impact factor for 70R(T) shall be br 25% as per clause 211.3(a)(i) of IRC:6-2000 Loading Includind impact 88.19 kN/m2 The larger of the two that is 88.2 kN/m2 is considered

- As the load of Wheel after disposal over lap both wheels need to be taken together. 1)
- For the dispersal refer IRC:21-2000 Clause 305.16.4.
- impact as per IRC-6-2014 Clause 208.6.7(c) due to cushion more than 3.0 m.
- 2.1.3 Total load (D.L. +L.L.)
- 97.19 kN/m2

2.2 Bottom Slab

2.2.1 Dead load

Load from the top slab including cushion = 9 kN/m2
Load of walls =
$$(2x1.8x0.3x24)/2.6$$
 = 9.97 kN/m2
self wt. of Bottom slab = 0.30 x 24 = 7.2 kN/m2
Total Load = 26.17 kN/m2

The live Load on top box will be disperse through walls and when arranged on the carriage way (length wise of the box) the distribution shall be as under:

Taking reductiom for simultaneous addition lane loadings at 20% (refer IRC:6-2000, clause 208), the load on unit area of bottom salb for two track loading works out to 20.51KN/M2, if one track without reduction is considereed restricting area as dispersal the laod per unit area works out 19.8kN/m2.The dispersed live load on bottom slab can be taken to be 21kN/m2.

26.2 21 = Total load = 47.17 kN/m2 Live Load

Load from top slab with impact 88.19 kN/m2

114.36 kN/m2 Total load = 26.2 88 =

2.3 Side Wall

Box empty, earth pressure with live load surcharge equivalent to 0.72 m ht. of earth on both 2.3.1 case 1: sides fills.

Pre	essure due to live load Surcharge			
=	0.72 x 18 x 0.5	=	6.48	kN/m2
Pre	essure due to Earth Surcharge			
=	0.1 x 18 x 0.5	=	0.9	kN/m2
Pre	essure due to Earth Fill			
=	2.1 x 18 x 0.5	=	18.9	kN/m2

Case 2: Box full .Live Load Surcharge on side fill

2.3.2 case 3: Box Full, no live Load surcharge on side fill

2.4 Base

Press	ure due to Submerged	Earth		
=	8.4	=	8.4	kN/m2
Press	ure due to Earth Surch	arge		
=	0.9	=	0.9	kN/m2
_				
Press	sure			
DEAD	LOAD			
Load	from ton slah and wall	s including cushion		

road	from top slab and walls	including cushion		
		=	26.17	kN/m2
Self	weight of bottom slab			
=	0.3x24	-	7.2	kN/m2
Tota	l Load	-	33.37	kN/m2

Live Load						
There is no live load except coming	g from	n top slab				
withimpact		=	88.19	. kN/m2		
2.4.1 Base Presssure		=	121.56	kN/m2		
(Is safe for a S.B.C of 150 kN/m²)						
3 MOMENT CALCULATION						
3.1 TOP SLAB						
Fixed end moment due to dead load	=	9x2.3x2.3/12		=	3.97	
Fixed end moment due to live load	=	13.81x2.3x2.	3/12	=	6.09	
Total fixed end moment				=	10.06	kN.M
mid span moment due to dead load	=	9x2.3x2.3/8		=	5.95	
mid span moment due to live load	=	13.81x2.3x2.	3/8	=	9.13	
Total mid span moment				=	15.08	
2.2 POTTOM SLAP						
3.2 BOTTOM SLAB		26 172 22	2/12		11 54	
Fixed end moment due to dead load	=	26.17x2.3x2.	3/12	=	11.54	
Fixed end moment due to live load	=			=	6.09	
Total fixed end moment				=	17.63	kN.M
mid span moment due to dead load	=	26.17x2.3x2.	3/8	-	17.3	
mid span moment due to live load	=			=	9.13	
Total mid span moment				=	26.43	kN.M
3.3 SIDE WALL						
3.3.1 case-1 Box empty , surcharge load on si	ide fill	Fem at top du	e to dea	d load		
Fem at top due to dead load		rem at top at	ic to aca	u louu		
	9x2.1	x2 1		=	3.11	
12	30	ALIZ			5.11	
FEM at top due to live load	50					
= 6.48x2.1x2.1/12				=	2.38	
Total FEM at top				=	5.49	kN.M
FEM at bas due to dead load						
	.9x2.1	x2.1		-	4.5	kN.M
12 +	20					
FEM at bas due to live load				=	2.38	
Total FEM at base				=	6.88	kN.M
Mid Span moment due to dead load						
= <u>0.9x2.1x2.1</u> <u>18.9x2.1</u>	x2.1			=	5.71	
8 + 16						
Mid Span moment due to live load						
= 6.48x2.1x2.1/8				=	3.57	
Total mid span moment				=	9.28	kN.M
3.3.1 case-2 Box full ,live load surcharge on s	side fil	1				
Fem at top due to dead load						
= 0.9x2.1x2.1 + 8.4x2.1x2.	1			=	1.56	
12 30						
FEM at top due to live load						
FEM at top due to live load = 6.48x2.1x2.1/12 Total FEM at top					2.38	kN.M

FEM at bas due to Dead load			
= 0.9x2.1x2.1 + 8.4x2.1x2.1	=	2.18	kN.M
12 20			
FEM at bas due to live load .	=	2.38	
Total FEM at base	=	4.56	kN.M
Mid Span moment due to dead load			
$=$ 0.9x2.1x2.1 $\underline{8.4x2.1x2.1}$	=	2.82	
8 16			
Mid Span moment due to live load			
= 6.48x2.1x2.1/8	=	3.57	
Total mid span moment	=	6.39	kN.M
3.3.1 case-3 Box full ,no live load surcharge			
Fem at top due to dead load			
= 0.9x2.1x2.1 $8.4x2.1x2.1$	=	1.56	
12 30			
FEM at top due to live load	=	0	
Total FEM at top	=	1.56	kN.M
FEM at bas due to Dead load			
= 0.9x2.1x2.1 + 8.4x2.1x2.1	=	2.18	kN.M
12 20			
FEM at bas due to live load	-	0	
Total FEM at base	=	2.18	kN.M
Mid Span moment due to dead load			
= 0.9x2.1x2.1 + 8.4x2.1x2.1	=	2.82	
8 16			
Mid Span moment due to live load			
	=	0	2020123
Total mid span moment	=	2.82	kN.M

4 DISTRIBUTION FACTORS

Junction	MEMBERS	4EI/L=Kd ³ /L	modified 12	SUM 4EI/L	Distribution factors
	AB	1/2.3	0.435	0.435/0.911	0.480
Α	AD	1/2.1	0.476	0.476/0.911	0.520
	BC	1/2.1	0.476	0.476/0.911	0.520
В	BA	1/2.3	0.435	0.435/0.911	0.480
-	CD	1/2.3	0.435	0.435/0.911	0.480
С	СВ	1/2.1	0.476	0.476/0.911	0.520
-	DA	1/2.1	0.476	0.476/0.911	0.520
D	DC	1/2.3	0.435	0.435/0.911	0.480

5 MOMENT DISTRIBUTION

5.1 F.E.M. Due to dead load

 M_{AB} = 3.97 M_{BA} = -3.97

$$M_{CD}$$
 = 11.54
 M_{DC} = -11.54
 $CASE 1$ $CASE 2$ $CASE 3$
 M_{AD} = M_{BC} = 3.11 1.56 1.56
 M_{DA} = M_{CB} = 4.5 2.18 2.18

5.2 F.E.M. Due to live load

5.3 F.E.M. Due to total load

M _{AB}	=	10.06		
MBA	=	-10.06		
M _{CD}	=	17.63		
M _{DC}	=	-17.63		
		CASE 1	CASE 2	CASE 3
M _{AD} =	M _{BC} =	5.49	3.94	1.56
M _{DA} =	M _{CB} =	6.88	4.56	2.18

5.4 A typical distribution is shown in table .results based o similar distribution for other combination are given in other table

CASE 1:

JOINT		A	В		С		DC	
MEMBER	AD	AB	BA	BC	СВ	CD	DC	DA
D.F.	0.520	0.480	0.480	0.520	0.520	0.480	0.480	0.520
MOMENT	-5.490	10.060	-10.060	5.490	-6.880	17.630	-17.630	6.880
BALANCE	-2.376	-2.194	2.194	2.376	-5.590	-5.160	5.160	5.590
C.O.	2.795	1.097	-1.097	-2.795	1.188	2.580	-2.580	-1.188
BALANCE	-2:024	-1.868	1.868	2.024	-1.959	-1.809	1.809	1.959
C.O.	0.980	0.934	-0.934	-0.980	1.012	0.905	-0.905	-1.012
BALANCE	-0.995	-0.919	0.919	0.995	-0.997	-0.920	0.920	0.997
C.O.	0.499	0.460	-0.460	-0.499	0.498	0.460	-0.460	-0.498
BALANCE	-0.499	-0.460	0.460	0.499	-0.498	-0.460	0.460	0.498
C.O.	0.249	0.230	-0.230	-0.249	0.250	0.230	-0.230	-0.250
BALANCE	-0.249	-0.230	0.230	0.249	-0.250	-0.230	0.230	0.250
C.O.	0.125	0.115	-0.115	-0.125	0.125	0.115	-0.115	-0.125
BALANCE	-0.125	-0.115	0.115	0.125	-0.125	-0.115	0.115	0.125
C.O.	0.063	0.058	-0.058	-0.063	0.063	0.058	-0.058	-0.063
BALANCE	-0.063	-0.058	0.058	0.063	-0.063	-0.058	0.058	0.063

C.O.	0.032	0.029	-0.029	-0.032	0.032	0.029	-0.029	-0.032
BALANCE	.\ -0.032	-0.029	0.029	0.032	-0.032 -	-0.029	0.029	0.032
C.O.	0.016	0.015	-0.015	-0.016	0.016	0.015	-0.015	-0.016
BALANCE	-0.016	-0.015	0.015	0.016	-0.016	-0.015	0.015	0.016
C.O.	0.008	0.008	-0.008	-0.008	0.008	0.008	-0.008	-0.008
BALANCE	-0.008	-0.008	0.008	0.008	-0.008	-0.008	0.008	0.008
C.O.	0.004	0.004	-0.004	-0.004	0.004	0.004	-0.004	-0.004
BALANCE	-0.004	-0.004	0.004	0.004	-0.004	-0.004	0.004	0.004
C.O.	0.002	0.002	-0.002	-0.002	0.002	0.002	-0.002	-0.002
BALANCE	-0.002	-0.002	0.002	0.002	-0.002	-0.002	0.002	0.002
C.O.	0.001	0.001	-0.001	-0.001	0.001	0.001	-0.001	-0.001
BALANCE	-0.001	-0.001	0.001	0.001	-0.001	-0.001	0.001	0.001
C.O.	0.001	0.001	-0.001	-0.001	0.001	0.001	-0.001	-0.001
BALANCE	-0.001	-0.001	0.001	0.001	-0.001	-0.001	0.001	0.001
TOTAL	-7.110	7.110	-7.110	7.110	-13.226	13.226	-13.226	13.226

NET MOMENT DIAGRAM

CASE 2:

JOINT		A	E	3		C	D	С
MEMBER	AD	AB	BA	BC	СВ	CD	DC	DA
D.F.	0.520	0.480	0.480	0.520	0.520	0.480	0.480	0.520
MOMENT	-3.940	10.060	-10.060	3.940	-4.560	17.630	-17.630	4.560
BALANCE	-3.182	-2.938	2.938	3.182	-6.796	-6.274	6.274	6.796
C.O.	3.398	1.469	-1.469	-3.398	1.591	3.137	-3.137	-1.591
BALANCE	-2.531	-2.336	2.336	2.531	-2.459	-2.269	2.269	2.459
C.O.	1.230	1.168	-1.168	-1.230	1.266	1.135	-1.135	-1.266
BALANCE	-1.247	-1.151	1.151	1.247	-1.249	-1.152	1.152	1.249
C.O.	0.625	0.576	-0.576	-0.625	0.624	0.576	-0.576	-0.624
BALANCE	-0.625	-0.576	0.576	0.625	-0.624	-0.576	0.576	0.624
C.O.	0.312	0.288	-0.288	-0.312	0.313	0.288	-0.288	-0.313
BALANCE	-0.312	-0.288	0.288	0.312	-0.313	-0.288	0.288	0.313
C.O.	0.157	0.144	-0.144	-0.157	0.156	0.144	-0.144	-0.156
BALANCE	-0.157	-0.144	0.144	0.157	-0.156	-0.144	0.144	0.156

12,207	-12,207	12,207	-12,207	6.272	-6,272	272.9	-6.272	JATOT
100.0	100.0	100.0-	100.0-	100.0	100.0	100.0-	100.0-	BALANCE
100.0-	100.0-	100.0	100.0	100.0-	100.0-	100.0	100.0	.0.0
200.0	200.0	200.0-	200.0-	200.0	200.0	200.0-	200.0-	BALANCE
Z00.0-	200.0-	200.0	200.0	Z00.0-	200.0-	200.0	200.0	.0.0
500.0	£00.0	E00.0-	£00.0-	£00.0	500.0	£00.0-	-0.003	BALANCE
£00.0-	500.0-	£00.0	£00.0	£00.0-	£00.0-	600.0	600.0	.o.o
500.0	200.0	500.0-	500.0-	500.0	200.0	500.0-	200.0-	BALANCE
500.0-	500.0-	200.0	500.0	500.0-	200.0-	500.0	500.0	C.O.
0.010	600.0	600.0-	010.0-	0.010	600.0	600.0-	- 010.0-	BALANCE
010.0-	600.0-	600.0	0.010	0.010	600.0-	600.0	0.010	C.O.
0.020	810.0	810.0-	-0.020	0.020	810.0	810.0-	-0.020	SALANCE
-0.020	810.0-	810.0	0.020	0.020	810.0-	810.0	0.020	C.O.
660.0	980'0	980.0-	-0.039	0,040	980.0	980.0-	040.0-	SALANCE
660.0-	980'0-	980'0	660.0	040.0-	980.0-	9£0.0	0,040	C.O.
620'0	0.072	-0.072	670.0-	870.0	270.0	- 270.0-	870.0-	SALANCE
640.0-	270.0-	270.0	640.0	870.0-	270.0-	270.0	870.0	.o.ɔ

NET MOMENT DIAGRAM

3	DO)		8	1	1	TNIOL
AG	DC	CD	CB	BC	A8	8A	αA	MEMBER
0.520	084.0	084.0	0.520	0.520	084.0	0.480	0.520	J.G
2,180	059.71-	17.630	-2.180	095°T	090.01-	10.060	09S'T-	MOMENT
450.8	7.416	914.7-	₽ £0.8-	4.420	4.080	080.4-	-4.420	BALANCE
-2.210	807.6-	807.5	2.210	710.p-	-2.040	2.040	4.017	.0.0
770.E	2.841	148.2-	770.E-	3.150	706.2	706.2-	-3.150	BALANCE
SLS'T-	1.421	1.421	S/S'T	688'T-	-1.454	J.454	1.539	.0.0
1.558	1.438	854.I-	855.1-	955°T	T.437	1.437	955'T-	BALANCE
877.0-	617.0-	617.0	877.0	67T.O-	617.0-	617.0	677.0	.o.o
877.0	617.0	61T.0-	87T.0-	6/T.0	617.0	61T.O-	67T.O-	BALANCE
065.0-	098'0-	0.360	0.390	685.0-	098.0-	0.360	685.0	.0.0
0.390	035.0	098.0-	065.0-	685.0	098.0	098.0-	685.0-	BALANCE

C.O.	0.195	0.180	-0.180	-0.195	0.195	0.180	-0.180	-0.195
BALANCE	-0.195	-0.180	0.180	0.195	-0.195	-0.180	0.180	0.195
C.O.	0.098	0.090	-0.090	-0.098	0.098	0.090	-0.090	-0.098
BALANCE	-0.098	0.090	0.090	0.098	-0.098	-0.090	ó.090	0.098
C.O.	0.049	0.045	-0.045	-0.049	0.049	0.045	-0.045	-0.049
BALANCE	-0.049	-0.045	0.045	0.049	-0.049	-0.045	0.045	0.049
C.O.	0.025	0.023	-0.023	-0.025	0.025	0.023	-0.023	-0.025
BALANCE	-0.025	-0.023	0.023	0.025	-0.025	-0.023	0.023	0.025
C.O.	0.013	0.012	-0.012	-0.013	0.013	0.012	-0.012	-0.013
BALANCE	-0.013	-0.012	0.012	0.013	-0.013	-0.012	0.012	0.013
c.o.	0.007	0.006	-0.006	-0.007	0.007	0.006	-0.006	-0.007
BALANCE	-0.007	-0.006	0.006	0.007	-0.007	-0.006	0.006	0.007
C.O.	0.004	0.003	-0.003	-0.004	0.004	0.003	-0.003	-0.004
BALANCE	-0.004	-0.003	0.003	0.004	-0.004	-0.003	0.003	0.004
C.O.	0.002	0.002	-0.002	-0.002	0.002	0.002	-0.002	-0.002
BALANCE	-0.002	-0.002	0.002	0.002	-0.002	-0.002	0.002	0.002
C.O.	0.001	0.001	-0.001	-0.001	0.001	0.001	-0.001	-0.001
BALANCE	-0.001	-0.001	0.001	0.001	-0.001	-0.001	0.001	0.001
TOTAL	-5.130	5.130	-5.130	5.130	-11.064	11.064	-11.064	11.064

NET MOMENT DIAGRAM

		Distribu				
LOAD	CASE	M _{AB}	M _{DC}	M _{AD}	M _{DA}	Remarks
	CASE	M _{BA}	M _{CD}	M _{BC}	M _{CB}	Load on top slab and bottom
	1	7.110	-13.226	-7.110	13.226	slab remains same in all cases, only load on side wall
OTAL LOAD	2	6.272	-12.207	-6.272	12.207	varies.
	3	5.130	-11.064	-5.130	11.064	No braking force need be
MAX.		7.110	13.226	7.110	13.226	considered due to cushion.

MID SPAN MOMENTS (TOTAL LOADS ONLY)

MEMBER	CASE 1	CASE 2	CASE 3	REMARKS
M _{AB}	15.08- (7.11+7.11)/2	15.08- (6.272+6.272)/2	15.08- (5.13+5.13)/2	
	7.97	8.808	9.95	
M _{CD}	26.43- (13.226+13.226)/ 2	26.43- (12.207+12.207)/ 2	26.43- (11.064+11.064)/ 2	The walls bends outwardly in all threee cases
	13.204	14.223	15.366	
M _{AD}	9.28- (7.11+13.226)/2)	6.39- (6.272+12.207)/2)	2.82- (5.13+11.064)/2)	
	-0.888	-2.850	-5.277	

6 BRAKING FORCE

6.1 LOAD:70R(T), wheel load is considered as there is no overlapping

The braking ofrce shall be 20% for the first lane load

The brakig force = 350X 20/100 = 70 kN

Load on top box which will affect the box

= 2.60 x 70/4.77 = 38.16 kN

6.2 Moment due to braking force

$$M_{AB} = M_{CD} = 38.16x4.77/2$$

= 91.01 kN

The moments at top and bottom end sahll be zero

After distribution of moment among all the member a moment of 46 kN.m is obtained at all end This moment is added to the maximum moments obtained for varius combination of loadings at the ends of members to get design moments. Since braking force can also act from the reverse direction the moment at junctions are added irrespective of its sign

7 DESIGN OF SECTION

7.1 Design moemnts

MID-SPAN

Load	Case	M _{AB}	M _{dc}	AB	DC	AD
Total Load	Maximum of All cases	7.110	13.226	9.95	15.366	-0.888
Braking Force	Distributed Moments at support	45.510	45.510	0	0	0
Design	Support Moments Including braking	52.620	58.736	9.950	15.366	-0.888

7.2 Top Slab

Design of Top slab under Max. sagging (+ve) B.M.

Maximum moment AT mid span including braking = 9.950 kN.m

Depth required =
$$\sqrt{\frac{9.95 \times 10^6}{1000 \times 1.105}}$$
 = 94.89 mm

Ast =	M =	9.950	x 10 ⁶	=	184.47	mm ²
	tjd	230 x 0.9	02 x 260			
Thickness of	f top slab provid	ed		=	0.300	
Clear cover	provided			=	0.040	
1 Diameter of	the reinforcem	ent st bar	s	=	12	mm
2 Diameter of	the reinforcem	ent Cranc	k bars	=	16	mm
Effective de	pth provided us	ing mm cove	r and mm dia	bars		
				=	0.254	
Providing 12	2 mm dia bars at	a spacing of	300	mm	376.8	mm ²
Providing 1	6 mm dia bars at	a spacing of	300	mm	669.87	mm ²
There fore a	area of steel pro	vided		=	1046.67	mm ²
					HENCE SA	FE

There fore provide sagging reinforcement of 12 mm dia bars at 300 mm c/c spacing

Design of Top slab under Max. hogging (-ve) B.M.

Maximum moment AT support n including braking = 52.620 kN.m

Depth required =
$$\sqrt{\frac{52.620 \times 10^6}{1000 \times 1.105}}$$
 = 218.22 mm
provide 260 mm is SAFE

As per CI. No. 305.5 of IRC 21: 2000, when the haunches are provided the total depth of slab or beam may be considered as depth of slab or beam assumed initially + size of haunches divided by 3.

In this case initial depth of slab assumed	= 0.	30 m
Size of Haunches	= 0.	20 x 0.2
Effective depth provided (when no haunches)	= 0.2	254 m
There fore the depth of slab when the haunches are provided	= 0.3+	0.2/3
	= 0.	37 m
Clear cover provided	= 0.	04 m
Diameter of the reinforcement (sagging bar)	= 1	.2 MM
Effective depth provided using 40 mm cover and 12 mm bars (v	when haunch	nes provided)
	= 0.37	- 0.04 - 0.006
	= 0.3	324 m
	HENC	CESAFE
Area of steel required	= M/a	rst j d
Ast = $M = 52.620 \times 10^6 =$	975.54	mm ²
tjd 230 x 0.902 x 260		
Sagging steel are crancked on to supports		
	669.87	mm ²
Balane area of steel to be provided =	975.54 - 66	9.87
	305.67	mm ²
Diameter of straight bar =	12	mm
Providing mm dia straight bars at a spacing of =	300	mm
Ast. Provided by straight bars =	376.8	mm ²
Total area of steel provided =	669.87 + +	

1046.67 mm²

HENCE SAFE

There fore area of steel provided at supports:

Crancked bars of 12 mm dia at a spacing of 600 mm c/c

Straight bars of 12 mm dia at a spacing of 300 mm c/c

Max. shear force intensities at the supports are as shown on diagram

Max. Shear force of above case

111.7685 KN

Corrosponding distance 'X' from where it changes its sign (i.e. + or -) to Max. S.F.

1.05 M

Shear force at a distance of effective depth 'd' + half of the thickness of support from centre line of the support

= 0.3 + 0.3/2

0.45 M

There fore the Maximum shear force at a distance of 0.45 m from the centre line of the support are

= 111.7685 x (1.05 - 0.45) / 1.05

Max. Total shear force = 63.87 KN

Nominal shear stress = V / bd

= 63.8677142857143/(1000 X254)

= 0.25 N/mm²

% of tension steel provided at supports = 100 Ast. / bd

= 100 x 1046.67 / 1000 x 254

= 0.412 %

Corroesponding permisible shear stress Tc from Table 23 of IS 456:2000

= 0.272 N/mm²

Since the Permisible shear stress Tc is more than the Nominal shear stress Tv, Shear reinforcement is not needed, and the section is need not design from SHEAR criteria, Hence the section is to be designed from hogging (-ve) B.M.

Shear resisted by concrete Vc = Tc b d

= 0.412 x 1000 x 254

104648 N

105 KN

Shear resisted by bent up bars = 669.87 x 230 x 0.707

108928 N

109 KN

Total shear resisted by concrete & bent up bars = 104.65+108.93

214 KN

> 64 KN

Since the shear resisted by concrete & bent up bars are more than the required, Design of reinforcement from shear criteria is not needed. HENCE O.K.

8.2 BOTTOM Slab

Depth required =
$$\sqrt{\frac{15.366 \times 10^6}{1000 \times 1.105}}$$
 = 117.92 mm
provide 260 mm is SAFE

Ast =
$$\underline{M}$$
 = $\underline{15.366}$ x $\underline{106}$ = 284.87 mm³

Thickness of Bottom slab provided = 0.300
Clear cover provided = 0.040

1 Diameter of the reinforcement st bars = 12 mm
2 Diameter of the reinforcement Cranck bars = 16 mm = 0.254

Providing 12 mm dia bars at a spacing of 300 mm 376.8 mm²
2 Providing 16 mm dia bars at a spacing of 300 mm 669.87 mm²
There fore area of steel provided = 1046.67 mm²

There fore provide sagging reinforcement of 12 mm dia bars at 300 mm c/c spacing

Design of Bottom slab under Max. hogging (-ve) B.M.

Depth required =
$$\sqrt{\frac{58.736 \times 10^6}{1000 \times 1.105}}$$
 = 230.55 mm
provide 260 mm is SAFE

As per Cl. No. 305.5 of IRC 21: 2000, when the haunches are provided the total depth of slab or beam may be considered as depth of slab or beam assumed initially + size of haunches divided by 3.

Effective depth provided (when no haunches) 0.254 =

There fore the depth of slab when the haunches are provided 0.3 + 0.2/3

0.37 m Clear cover provided 0.04 m Diameter of the reinforcement (sagging bar) 12

Effective depth provided using 40 mm cover and 12 mm bars (when haunches provided)

0.37 - 0.04 - 0.006 0.324 m

MM

HENCE SAFE

HENCE SAFE

Area of steel required M / ost j d

Ast = 58.736 x 106 1088.92 mm2 tjd 230 x 0.902 x

Sagging steel are crancked on to supports

669.87 mm² 1088.92 - 669.87 Balane area of steel to be provided 419.05 mm2 12 mm Diameter of straight bar Providing mm dia straight bars at a spacing of 300 mm 376.8 mm² Ast. Provided by straight bars 669.87 + +376.8 Total area of steel provided 1046.67 mm² UNSAFE

There fore area of steel provided at supports: Crancked bars of 12 mm dia at a spacing of 600 mm c/c Straight bars of 12 mm dia at a spacing of 300 mm c/c

Max. shear force intensities at the supports are as shown on diagram

Max. Shear force of above case

= 131.514 KN

Corrosponding distance 'X' from where it changes its sign (i.e. + or -) to Max. S.F.

= 1.05 M

Shear force at a distance of effective depth 'd' + half of the thickness of support from centre line of the support

= 0.3 + 0.3/2= 0.45 N

There fore the Maximum shear force at a distance of 0.45 m from the centre line of the support are

= 131.514 x (1.05 - 0.45) / 1.05

Max. Total shear force = 75.15 KN

Nominal shear stress = V / bd

= 75.1508571428571/(1000 X254)

= 0.30 N/mm³

% of tension steel provided at supports = 101 Ast. / bd

= 100 x 1046.67 / 1000 x 254

0.412 %

Corroesponding permisible shear stress Tc from Table 23 of IS 456:2001

= 0.272 N/mm²

Since the Permisible shear stress Tc is less than the Nominal shear stress Tv, The design is to be done from SHEAR criteria.

Shear resisted by concrete Vc = Tc b d

= 0.412 x 1000 x 254

= 104648 N

105 KN

Shear resisted by bent up bars = 669.87 x 230 x 0.707

Since the shear resisted by concrete & bent up bars are more than the required, Design of reinforcement from shear criteria is not needed. HENCE O.K.

8.2 SIDE WALLS

Maximum moments at junctions of slabs and walls are same as slabs. Hence provide same reinforcements as slabs at junctions/supports.

Design of SIDE WALL under Max. sagging (+ve) B.M.

Maximum moment support/mid span including braking = -0.888 kN.m

Depth required =
$$\sqrt{\frac{-0.888 \times 10^6}{1000 \times 1.105}}$$
 = #NUM! mm

provide 260 mm is ####

Ast =
$$\underline{M}$$
 = $\underline{-0.888}$ x $\underline{106}$ = -16.46 mm³

Thickness of Side wall provided = 0.300

Clear cover provided = 0.040

Diameter of the reinforcement = 12 mm

Effective depth provided using mm cover and mm dia bars = 0.254

Providing 12 mm dia bars at a spacing of 300 mm

There fore area of steel provided = 376.8 mm³

HENCE SAFE

There fore provide sagging reinforcement of 12 mm dia bars at 300 mm c/c spacing There fore provide Hogging reinforcement of 12 mm dia bars at 300 mm c/c spacing

Hence Reinforcement from Cranck Bars from top slab and Bottom slab upto L/4 will be provided to fulfill the requirement of the Hogging reinforcement of side walls.

check for shear

$$R_A = 0.9x2.3 + 6.48x2.3 + (1/2 x18.9x2.3)$$

= 1.035 + 7.452 + 7.245
= 15.73 KN

$$R_{D} = 0.9x2.3 + 6.48x2.3 + (2x1/2x18.9x2.3)$$

$$\frac{1.035}{2} + 7.452 + 14.49$$

$$\frac{1.035}{22.98} + \frac{7.452}{2} + \frac{14.49}{2}$$

S.F. near top at Deff from

A= 15.73-0.9x0.444-6.48x0.444-1/2 x3.649x0.444

11.64 KN

S.F. near Base at Deff from

D= 22.98-x0.444-6.48x0.444-(18.9+15.25)/2x0.444

12.52 KN D=

MAXIMUM SHEAR STRESS

12.52X 1000

254X 1000

0.049 N/mm²

LESS THAN 0.23 N/mm²

HENCE SAFE FOR 0.25 % STEEL

DISTRIBUTION STEEL:

As per IS Code 3370

MINIMUM REINFORCEMENT TO BE PROVIDED

0.12% of the cross-sectional area

0.12%

x 300 x 1000

360 mm²

Diameter of the reinforcement

mm

mm

Spacing Required

12 314 mm

Spacing Provided

300

There fore area of steel provided

376.8 mm²

On both faces of wall

753.6 mm²

Sub Engineer N.D. Division No. 7 Satna (M.P.)

Assistant Engineer (F-33...) N.D. Division No. 7 Satna (M.P.)

		BAR BENDING SCHEDULE FOR BOX CUL	VERT		tatel and				
Symbol of Bars	Description of bars	Type of Bars	Dia of bars in mm	Spacing of bars in	Length of bars in M	Nos of bars	Total Length in M	Unit wt. In kg/m	Qty in
OP SI	LAB								
А	MAIN BAR ST. BAR(BOTTOM)	2.52	12	300	2.52	100	252	0.889	224
В	MAIN BAR BENT UP BOTTOM	0.71 0.22 0.71	16	300	4.12	100	412	1.58	651
С	MAIN BAR ST. BAR(TOP)	2.52	12	300	2.52	100	252	0.889	224
D	DISTRIBUTION	29.96	12	300	29.96	2 x9	539.3	0.889	479
отто	OM SLAB								
E	MAIN BAR ST. BAR(TOP)	2.52	12	300	2.52	100	252	0.889	224
F	MAIN BAR BENT UP TOP	0.71	16	300	4.12	100	412	1.58	651
G	MAIN BAR ST. BAR(BOTTOM)	2.52	12	300	2.52	100	252	0.889	224

Н	DISTRIBUTION	29.96	12	300	29.96	2 x9	539.3	0.889	479
ERTIC	AL WALL								
1	Away water Face	2.32 2.32	12	300	3.32	2 x100	664	0.889	590
J	U/S	29.96	12	300	29.96	2 x8	479.4	0.889	426
К	WATER SIDE &INTERMEDIA TE WALLS	2.32 2.32	12	300	3.32	2 x100	664	0.889	590
L	DISTRIBUTION	29.96	12	300	29.96	2 x8	479.4	0.889	426
М	HAUNCH BARS	0.3 \$\frac{1}{2}\$ 0.8 \$\times_{-10.3}	10	300	1.4	4 ×100	560	0,617	346
		TOTAL							5534K
		ADD 5 % FO WAISTAGE AND OVELAPPING	TO THE REAL PROPERTY.						277KG
de la		GRAND TOTAL							5811K

U/S BREAST WALL:

Earth pressure is acting at a slope of 2:1

$$Cos(\phi)$$
 = 0.866
 $Cos(\delta)$ = 0.894

$$K_{ah} = \frac{\cos(\delta) \left[\cos(\delta) - v \cos^2(\delta) - \cos^2(\phi) \right]}{\left[\cos(\delta) + v \cos^2(\delta) - \cos^2(\phi) \right]}$$

$$K_{ah}$$
 = 0.894 x $\frac{\{0.894 - \sqrt{(0.894^2 - 0.866^2)}\}}{\{0.894 + \sqrt{(0.894^2 - 0.866^2)}\}}$

1.236

0.3

340 349

339.113

$$K_{ah}$$
 = 0.601
 1.116
 K_{ah} = 0.538

Lateral Pressure P =
$$\frac{K_{ah} \times W \times H^2}{2}$$

= $\frac{0.538 \times 1.80 \times 1.24^2}{2}$
= 0.740 t/m

Total Horizontal Pressure =
$$P \times Cos(\delta)$$

= 0.740×0.894
= 0.662 t/m^2

Moment at junction of barrel &
$$P \times Cos(\delta) \times H$$
 & breast wall = 3 = 0.662 x 1.24 3 = 0.2726 t-m/m = 2.726 KN-m/m

Provide 12 mm dia bars @ 300 mm c/c as main bar.

But minimum steel required =
$$0.12\% \times 300 \times 1000$$

= 360 mm^2

Provide 12 mm dia bars

Hence Spacing =
$$A\phi \times 1000$$
 A_{st}

= 314.00 mm

Provide = 300.00 mm

Provide 12 mm dia bars @ 300 mm c/c as distribution bar.

Sub Engineer N.D. Division No. 7 Satna (M.P.) Assistant Engineer (F-23..)

N.D. Division No. 7

Satna (M.P.)

	Abstract of Umarhat Disty. N	.H. AT R.	D. 710	0 M.		
S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref.
1	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out,	3	4	5	6	7
1	construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 in					
	Ordinary Soil Depth Up to 3 m.	367.924	61	Cum	22443	12.1 l (i)
2	Providing and laying Plain/Reinforced cement concrete in open foundation including form work shuttering etc. complete as per drawing and technical specifications and as per relevant clauses of sections 1500, 1700 & 2100 with .) PCC GRADE M15	227.416	4617	Cum	1049978	12.6
3	Supplying, fitting and placing HYSD bar reinforcement in super- structure complete as per drawing and technical specifications as per relevant clauses of section 1600 FE550	10.988	82810	tonne	909916	14.4
4	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC	5.891	5674	Cum.	33427	14.1 (A) (2
5	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC GRADE M 25	175.368	6286	Cum.	1102363	14.1 (B) 2
6	Providing weep holes in Brick masonry/Plain/Reinforced concrete abutment, wing wall/return wall with 100 mm dia AC pipe, extending through the full width of the structure with slope of 1V:20H towards drawing foce. Complete as per drawing and Technical specifications	9.600	185	Rm	1776	13.9
7	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 inBack Filling in Marshy Foundation Pits	57.125	308	Cum	17595	12.1 (V
8	Embankment Construction with Material Obtained from Borrow Pits Construction of embankment with approved material having CBR>7 obtained from borrow pits with all lifts and leads, transporting to site, spreading, grading to required slope and compacting to meet requirement of table 300-1, 300-2 and as per relevent clauses of section-300.	375.000	155	Cum.	58125	3.13

S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref.
9	mixing by mix in place method with rotavator or plant mix method at OMC, and compacting with vibratory rollers of 80 to 100 kN static weight to achieve the desired density, complete as per Clause 401 of Specification. Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper		934	Cum	140100	4.1
10			1347	Cum	101025	4.8 i (a)
11	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	56.250	1250	Cum.	70313	4.8 ii (a)
	Total				3507060	
	Say				35.07	Lakhs
	Add 18% GST				6.3127	
7 - 1	Total Amount	Sign Park			41.3833	Lakhs

Assistant Engineer (F-23..)

N.D. Division No. 7

Satna (M.P.)

Executive Engineer N.D. Division No. 7 Satha (M.P.)

	SATNA NAGOD BRAN		STIMAT					
	UMARHA	-	THE RESIDENCE OF THE PARTY OF T	AT R.D. 710	00 M.			
UCSR tem No.	Item of Work	Nos.	L	В	H/D	Quantity	REM	MARKS
12.1	Earth work in excavation of foundation of including setting out, construction of she deleterious matter, dressing of sides and	oring and b	racing, ren	noval of stump	s and other	er	AVG. top	Excavation G.L.
	Concrete Barral	1	4.10	30.00	1.83	225.09	338.234	336.404
	Shear key U/S	1	4.10	0.80	0.59	1.94	336.404	335.813
109	Shear key D/S	1	4.10	0.80	0.60	1.97	336.390	335.790
	Head Wall U/S	2	2.70	2.50	2.52	34.03	338.234	335.713
	nead Wall 0/3					2014 a 2015 a 201		
	U/s well & barrel middle Flooring portion	1	3.14	2.35	2.12	15.66	338.234	336.113
	U/s well wall	1	3.14	2.50	2.42	19.02	338.234	335.813
	U/s Key wall	1	2.10	0.60	0.28	0.36	338.234	337.949
	Head Wall D/S	2	2.70	2.50	2.54	34.34	338.234	335.690
	D/s well & barrel middle Flooring portion	1	3.14	2.35	2.14	15.83	338.234	336.090
	D/s well wall	1	3.14	2.50	2.44	19.20	338.234	335.790
	D/s Key wall	1	2.10	0.60	0.38	0.49	338.234	337.849
	Total					367.924		Cum.
I (i)	Ordinary Soil Depth Up to 3 m.					367.924		Cum.
	of sections 1500, 1700 & 2100 with .) Po Barrel Pcc-1	1	3.10	27.70	0.10	8.587	1000	
	Barrel Pcc-2	1	3.00	27.40	0.20	16.440		
	U/s Head wall pcc -1	2	- 2.35	2.25	0.10	1.058		
	U/s Head wall pcc -2	2	2.30	2.15	0.30	2.967		
	D/s Head wall pcc -1	2	2.35	2.25	0.10	1.058		
	D/s Head wall pcc -2	2	2.30	2.15	0.30	2.967		
	U/S Head wall 1 Step	2	2.30	1.75	0.90	7.245		
	U/S Head wall 2 Step	2	2.30	1.13	2.94	15.194		
	D/S Head wall 1 Step	2	2.30	1.75	0.90	7.245		
	D/S Head wall 2 Step	2	2.30	1.13	2.71	14.019		
	U/S Head wall parapet	2	2.30	0.40	0.40	0.736		
	D/S Head wall parapet	2	2.30	0.40	0.40	0.736		
	· U/s & D/s well wall Circular pcc	2	3.14	3.13	0.30	5.89		
	. U/s & D/s well wall pcc	2	3.14	2.00	0.30	3.77		
	U/s well wall Lift	1	7.86	1.05	4.38	36.10		
	- D/s well wall Lift	1	7.86	1.05	3.76	31.00		-
	U/s Notch deduction in well wall Lift	-1	0.50	1.68	1.00	-0.84		
	D/s Notch deduction in well wall Lift	-1	0.50	1.68	0.95	-0.80		
	U/s & D/s Key wall pcc	2	2.20	0.70	0.30	0.92		
	U/s & D/s Key wall	2	1.80	0.30	0.50	0.54		
-	Lui a mi . Lai-Laca	2	3.50	27.97	0.15	29.37		
	U/s & D/s Approach Slab PCC				0.00	45.30		
	U/s & D/s Approach Slab PCC U/s & D/s Dwarf wall PCC U/s & D/s Dwarf wall	2	0.90	30.00 30.00	0.30	16.20 27.00		

UCSR tem No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS
14.4	Supplying, fitting and placing HYSD bar reindrawing and technical specifications as per					per	
	Barrel						
	Shear key Bar 12 MM Dia @ 150 mm	36	2.91		0.617	64.64	
	Shear key Disty Bar 12 MM Dia	40	2.52		0.888	89.51	
			-		+ +		
	Raft Main Bar 12 MM Dia @ 300 mm	101	2.772		0.888	248.62	
	Disty Bar 12 MM Dia @ 300 mm	18	29.92		0.888	478.24	
	Bentup Bar 16 MM Dia @ 300 mm	101	4.122		1.579	657.37	
	Raft Main Bar 12 MM Dia @ 300 mm	101	2.772		0.888	248.62	
	wall vertical Bar 12 MM Dia @ 300 mm	404	2.996		0.888	1074.82	
	wall Disty Bar 12 MM Dia @ 300 mm	32	29.92		0.888	850.21	
-	Top & bottom Hunch Bar 10 MM Dia @	404	1.538		0.617	383.37	
	300 mm Bracket Bar 10 MM Dia @ 150 mm	400	2.59		0.617	639.21	
					0.888	371.97	
	Braket Disty Bar 12 MM Dia	14	29.92			-200000000	
	Slab Main Bar 12 MM Dia @ 300 mm	101	2.52		0.888	226.01 478.24	
	Disty Bar 12 MM Dia @ 300 mm	18	29.92		0.888	657.37	
	Bentup Bar 16 MM Dia @ 300 mm	101	4.122		0.888	226.01	
	Slab Main Bar 12 MM Dia @ 300 mm Approach slab Bottom Bar 10 MM Dia @	101	2.52				
	300 mm B/s	26	28.44		0.617	456.23	
	Approach slab Bottom Bar 12 MM Dia @	376	4.072		0.888	1359.59	
125.00	300 mm B/s Approach slab Bottom Bar 10 MM Dia @	26	28.44		0.617	456.23	
	300 mm B/s Approach slab Bottom Bar 10 MM Dia @	20	20.44				
	300 mm B/s	190	4.08		0.617	478.30	
	Approach slab wearing coat Bar 8 MM	172	4.22		0.395	286.71	
	Dia @ 300 mm B/s Approach slab wearing coat Bar 8 MM	00	416		0.395	144.60	
	Dia @ 300 mm B/s	88	4.16		0.333	20.0860,200	
	Total					9875.88	
	Head Wall U/s & D/s					65.00	
	Main Bar 10 MM Dia @ 200 mm	24	4.456		0.617	65.98	
	Disty Bar 8 MM Dia @ 200 mm	44	2.22		0.395	38.58	
	Total					104.57	
	2 Nos Headwall					209.14	
	Parapet wall				0.000	F2 02	
	Main Bar 12 MM Dia @ 150 mm	18	3.368		0.888	53.83	
	Disty Bar 12 MM Dia @ 300 mm	18	2.52		0.888	40.28	
	Crash Barrier		2.404		0.888	55.13	
	Main Bar 12 MM Dia @ 150 mm	20	3.104		0.888	34.28	
	Main Bar 12 MM Dia @ 150 mm	20	1.93		0.888	30.99	
	Disty Bar 10 MM Dia @ 150 mm	18	2.79		0.617	120.39	
	Total	-				240.78	
	2 Nos Crash Barrier						
	Wearing coat Main Bar 8 MM Dia @ 200 mm	15	8.32		0.395	49.30	
	Disty Bar 8 MM Dia @ 200 mm	43	2.75		0.395	15.55	
	Total	73		Manie		96.00	
	2 Nos Wearing coat	1 3 5				192.01	

UCSR tem No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS		
	U/s & D/s well		J. Albania						
	Main Bar 10 MM Dia @ 300 mm	27	3.98		0.617	66.30			
	Disty Bar 8 MM Dia @ 300 mm	13	7.755		0.395	39.82			
	Main Bar 12 MM Dia @ 300 mm	22	2.483		0.888	48.51			
	Disty Bar 12 MM Dia @ 300 mm	22	1.71		0.888	33.41			
		22	1.71		0.000	188.04			
	Total								
	2 Nos Well Wall					376.08			
	Grand Total					10987.997	Kg.		
14.1 (A)	Providing and Placing Reinforced/Prestre	essed cem	ent concre	te in super-struc	ture e/x	of sections			
(i) 2	reinforcement as per drawing and Techn 1500, 1700 and 2300 in RCC GRADE M 2		fication and	a as per relevant	ciauses	or sections			
	U/s RCC Flooring of well	1	3.14	3.125	0.300	2.95			
	D/s RCC Flooring of well	1	3.14	3.125	0.300	2.95			
	Total			0.200		5.891	Cum.		
	Providing and Placing Reinforced/Prestr	essed cem	ent concre	ete in super-struc	ture e/x				
14.1 (B)	reinforcement as per drawing and Techn	nical Speci	fication an	d as per relevant	clauses	of sections			
1.7 -	1500, 1700 and 2300 in RCC GRADE M 2			2.52	0.00	4.403			
	Barrel Shear key	2	0.95	2.60	0.89	4.402			
	Barral Raft	1	30.00	2.60	0.30	23.400			
	Bottom wall Hunch	2	30.00	0.50x 0.2	0.20	1.200			
	Barral WALL	2	30.00	0.30	1.80	32.400			
	Top wall Hunch	2	30.00	0.50x 0.2	0.20	1.200			
	Triangle Braket	2	0.15	27.91	0.30	2.512			
	Rectangular Braket	2	0.30	28.16	0.30	5.069			
	Barral Slab	1	30.00	2.60	0.30	23.400			
	Perapet Wall	2	2.60	0.30	1.24	1.942	10.100		
	Crash barrier	2	2.60	Area=.2936	0.20	1.527			
	L/s Approach Slab	1	28.16	3.80	0.30	32.102			
No.	R/s Approach Slab	1	28.16	3.80	0.30	32.102 3.276			
12.16	Wearing coat	2	8.40	2.60	0.08	5.418			
	Aproach Slab B/s Wearing coat	2	8.40	4.30	0.08	5.418			
,	Aproach Slab B/s Wearing coat	2	8.40	4.30	0.08	175.368	Cum.		
	Total Providing weep holes in Brick masonry,	/pl-:-/p-:	formedon	esste shutment	Hoodw	THE RESERVE OF THE PARTY OF THE	Cum		
13.9	wall with 100 mm dia AC pipe, extendir :20H towards drawing foce. Complete	ng through	the full wi	idth of the struct	ure with	slope of 1V			
75.00	Weep Hole	8	1.20			9.600			
	Total					9.600	RM		
12.1 (Vi)	Earth work in excavation of foundation including setting out, construction of sl	ner							
Spire.	Head Wall U/S	1	28.16	2.30	0.44	28.563			
	Head Wall D/S	1	28.16	2.30	0.44	28.563			
	Total					57.125	Cum		
		Embankment Construction with Material Obtained from Borrow Pits Construction of embankment with approved material having CBR>7 obtained from borrow pits with all lifts and leads, transporting to site, spreading, grading to required slope and compacting to meet requirement of table 300-1, 300-2 and as per relevent clauses of section-300.							
3.13	Embankment Construction with Mater Construction of embankment with app with all lifts and leads, transporting to	ial Obtain roved ma site, sprea	terial havin ding, gradi	g CBR>7 obtaine ng to required slo	ope and	compacting			
3.13	Embankment Construction with Mater Construction of embankment with app with all lifts and leads, transporting to	ial Obtain roved ma site, sprea	terial havin ding, gradi	g CBR>7 obtaine ng to required slovent clauses of se	ope and	compacting 0.			

Item No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS	
4.1	Granular Sub-base with Well Graded Ma Construction of granular sub-base by pro gravel or crushed stone having CBR >30, prepared surface, mixing by mix in place and compacting with vibratory rollers of a density, complete as per Clause 401 of Sp	viding we spreading method v 80 to 100	ell graded mag g in uniform with rotavato) kN static we	aterial like na layers with m or or plant mi	tural sand otor grade x method	crushed er on at OMC,		
	GSB 200 mm thick	1	100.00	7.50	0.20	150.000		
	Total		77.69		1	150.000	Cum	
481121	packing, rolling with vibratory roller 8-10	and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification. (i) Grading I (63 to 45 mm) (a) Using						
4.8 i (a)	and brooming requisite type of screening aggregate, watering and compacting to t (i) Grading I (63 to 45 mm) (a) Using							
4.8 i (a)	and brooming requisite type of screening aggregate, watering and compacting to t	he requir	red density a	s per clause 4	04 of spec	75.000		
4.8 i (a)	and brooming requisite type of screening aggregate, watering and compacting to to (i) Grading I (63 to 45 mm) (a) Using Screening Type A (13.2 mm Agg.) Total	he requir	100.00	s per clause 4	0.10	75.000 75.000	Cum	
	and brooming requisite type of screening aggregate, watering and compacting to to (i) Grading I (63 to 45 mm) (a) Using Screening Type A (13.2 mm Agg.)	1 g, spread tion inclu tonnes i	100.00 ing and completing spreading spreading stages to pg Materials to	7.50 pacting stone ng in uniform roper grade a o fill up the in	0.10 aggregate thickness and cambe terstices of	75.000 75.000 es of specific hand er, applying of coarse	Cum	
4.8 i (a)	and brooming requisite type of screening aggregate, watering and compacting to	1 g, spread tion inclu tonnes i	100.00 ing and completing spreading spreading stages to pg Materials to	7.50 pacting stone ng in uniform roper grade a o fill up the in	0.10 aggregate thickness and cambe terstices of	75.000 75.000 es of specific hand er, applying of coarse	Cum	

Assistant Engineer (F-.23..)
N.D. Division No. 7
Satna (M.P.)

GOVERNMENT OF MADHYA PRADESH

NARMADA VALLEY DEVELOPMENT AUTHORITY

BARGI DIVERSON PROJECT

NAGOD SATNA BRANCH CANAL FROM RD 55.600KM TO RD 83.00KM INCLUDING DISTRIBUTION SYSTEM

OFFTAKE FROM 5750 M OF UMARHAT DY RERUWA KALAN MR N.H. CROSSING AT RD - 1310 M

Prepared & Submitted By:

OFFSHORE INFRASTRUCTURES
LIMITED, MUMBAI

	Design	of RERUWA KA	LAN MR N.H	A. CROSSING	AT F	RD - 1310 M
CAN	AL DATA:					
1	Full Supply Discharge			(Q)	=	0.1266 Cumec
2	Bed Width			(B.W.)	=	0.3 M
3	Full Supply Depth			(F.S.D.)	=	0.3 M
4	Free Board			(F.B.)	=	0.45 M
5	Top Width of Bank :	Left		(1.0.)	=	1.00 M
		Right ·				
6	Bed Slope	Night			=	1.00 M
7	Side Slope :	Inner Claus		400	=	1 in 300
,	side slope :	Inner Slope		(1)	=	1.50 :1
0	Valacity	Outer Slope		(0)	=	2.00:1
8	Velocity Manning's "N"			(V)	=	0.957 M/Sec
9	Manning S N	Lined		(n)	=	0.018
10	Const Red to 1	Unlined		(n)	=	0.025
10	Canal Bed Level			(C.B.L.)	=	333.459 M
11	Full Supply Level			(F.S.L.)	=	333.759 M
12	Top Bank Level			(T.B.L.)	=	334.209 M
BRII	GE DATA :-					
1	Formation Level			(F.R.L.)	=	335.350 M
2	Ground Level			(G.L.)	=	334 M
3	Clear Width of Roadw	av		,/	=	6.45 M
4	Pipe Length				=	7.5 M
5	Extra Beam Width				=	0.000 M
6	Extra Beam Height				=	0.000 M
7	Extra Beam Length				=	0.000 M
8	Extra Beam Rest on Pi	pe			=	0.000 M
9	Overall Length				=	7.500 M
10	Pipe Invert Level in U/	's			_	333.109 M
11	Pipe Invert Level in D/					333.109 M
12	D/s CBL			(C D I)	=	
13	D/s FSL			(C.B.L.)	=	333.359 M
14	D/s TBL			(F.S.L.)	=	333.659 M
	BT RL			(T.B.L.)	=	334.109 M
13	DINE				=	331.91 M
	GN OF PIPE FOR DISC					
X- se	ctional area of Canal wa	ater way				
	Bed Width				=	0.30 M
	Full Supply Depth				=	0.30 M
	Water way (A)				=	$(0.3 + 1.5 \times 0.3) \times 0.3$
					=	0.23 Sq mts
	Velocity V ₁				=	0.957 M/Sec
Wate	er in pipe will run as ope	en channel flow				olor impec
V. (1000)			Assume di	ameter of pipe	=	1.00 M
		0.3 m, the pipe is de				um sectional area available for
flow.						0.700 0.11
	e X- sectional area of o				=	0.790 SqM
	ning's rougosity coeffici	ent for RCC Pipe			=	0.016
The	pipe invert level in u/s				=	CBL - Depression of pipe
	├ ── (2a)				=	333.459 - 0.35
4		+	0.25.44		=	333.109 M
0.3	A E	>B h=	0.35 M	10011		222.450.44
0.1	1/1	/ //	0.15 **	(C.B.L.)	=	333.459 M
	10/	1/2 FSD =	0.15 M	(F.S.L.)	=	333.759 M
1	// 8	11 -		θ	=	$2 \times ACOS \left \frac{0.3}{1.00} \right \times \left \frac{180}{1.00} \right $
		11 -				(1.00) (π)
	11	// GEF	SHOR	θ	=	145.08°
	0.115	0115 /4/	V Trans			$2 \times ACOS \left(\frac{0.3}{1.00} \right) \times \left(\frac{180}{\pi} \right)$ 145.08°
	0.115	0.115	No.			- Cur

Assistant Engineer (F-1....)
N.D. Division No. 7
Satna (M.P.) Sub-Engineer N.D. Division No. 7 Satna (M.P.)

1/2 width of pipe at canal F.S.L. AE (a) = $(OA^2 - EO^2)^{1/2}$ (0.5 x 0.5 - 0.15 x 0.15) ^ 0.50 0.477 M Area of upper segment of pipe remains unused (a2+h2)^0.5 4/3h x 4/3 x 0.35 x (0.2275 + 0.1225) ^ 0.50 0.276 SqM Hence net area of one pipe = Total Area - Area of upper segment of pipe remains unused 0.790 - 0.276 0.514 SqM No. of rows of pipe = 1 By providing one row of pipe, X- sectional area 0.514 SqM Full Supply Discharge = 0.127 Cumecs Hence Velocity through pipe to pass full discharge V₂ = (0.1266 / 0.514) 0.246 M/Sec Total perimeter of one pipe 2 mr 3.142 M Length of upper arc πθr/180 (3.14 x 145.08 x 0.5)/180 1.265 M Net wetted perimeter of one pipe 3.142 - 1.265 1.877 M Hydraulic mean depth of pipe not running full A/P (0.514 / 1.877) R 0.274 M R^{2/3} 0.422 (V x n) Slope 0.246 x 0.016 0.422 0.0001 Slope 1 in 10000 Say Length of Pipe 7.50 M 7.50 10000 0.001 M Drop in plpe

HEAD LOSS :-

Entry Loss =
$$0.20 \times \frac{V_2^2 - V_1^2}{2g}$$
 V_1 = 0.246 M/Sec V_2 = 0.957 M/Sec Entry Loss = $0.20 \times \frac{0.246 - 0.957^2}{2 \times 9.81}$ = -0.009 M Exit Loss = $0.30 \times \frac{0.246 - 0.957^2}{2 \times 9.81}$ = -0.013 M Total Head Loss = Drop in Pipe = $-0.009 + 0.001 + -0.013$ = -0.021 M Head loss as per drop of canal = -0.021 M = -0.001 M Provided Head Loss in Lsec = -0.001 M Difference in head loss calculated and provided = $-0.021 - 0.001$ = -0.022 M

As there is 0.02M provision of head loss in canal L-section, Hence OK.

SCOUR DEPTH:

In this case however the canal is lined scour depth need not be calculated. However calculations are given as below:-

when:-
$$d = 1.34 \left(\frac{D_b^2}{K_{sf}} \right)^3$$

d_{sm} = Mean Depth of Scour

D_b = The design Discharge for Foundation per Meter width of effective waterway.

K_{sf} = Silt Factor fro a representative sample of bed material obtained up to the level of anticipated deepest scour

 $K_{sf} = 1.76 \overline{d_m}$

d_m = Weighted mean diameter in mm.

Particle Size = Heavy Sand d _m = 1	.29
K _{sf} = 1	999
D _b = 0	106
for Abutment $d = 1.34 \frac{0.106 \times 0.106}{1.999}$	= 0.178 M
Max Scour Depth $(D_m) = 1.27 \times d_{sm} = 1.27 \times 0.17$	8 = 0.23 M
In the present case, F.S.L. = 333.759 M	
Hence,	
Maximum depth of sour is up to = 333.759 - 0.23	= 333.53 M
Below G.L. the foundation is provided 1.00 M below G	.L. = 333.00 M
Below Canal Bed, the foundation is provided 1.20 M below P	ipe inv = 331.91 M
Foundation Level of Head Wall =	= 331.91 M
	Hence Safe

DESIGN OF HEAD WALL-

The design of Head wall is not done. Its width has been adopted as per chart for wing walls in E-in-C publication 70/1

1	Effective height of wall up to top of foundation level	=	335.35 - 332.209
		=	3.141 M
2	B/H factor as per E in C publication	=	0.61
3	B/H Angle	=	24.35°
4	Width required	=	1.92 M
5	Width provided	=	1.95 M

1.5 Wing Wall

Self Weight of wii = Wt. of part A + B + C + D

Weight of Part A = $2.25 \times 0.3 \times 2.4$

1.62 T

Weight of Part B = $0.3 \times 3.966 \times 2.4$

= 2.86 T

Weight of Part C = 0.225 x 3.366 x 2.4

1.82 T

Weight of Part D = $1/2 \times 1.425 \times 3.141 \times 2.4$

5.37 T

T. Self Wt of wing wall per m = 11.66 T

Weight of Earth above wall = Wt. of part 1 + 2 + 3

Weight of Part 1 = 0.15 x 1.791 x 1.8

Unit Weight of C.C. = 2.4 T/M Unit Weight of Earth = 1.8 T/M 0.48 T

Weight of Part 2 = 1/2 x 0.812535816618905 x 1.791 x 1.8

1.31 T

Weight of Part 3 = 0.15 x 1.791 x 1.8

0.48 T

Total Weight of Earth per m =

2.28 T Total Load

Stress =

Area

Total Load = Total Weight of concrete + Earth

= 11.66 + 2.28

13.94 T

Area 2.25 x 1

2.25 SqM

Stress = 13.94 2.25

6.20 t/m²

25.00 t/m²

Hence Safe

Sub Engineer N.D. Division No. 7 Satna (M.P.)

<

Assistant Engineer (F-.I.J...)
N.D. Division No. 7
Satna (M.P.)

41.5

	SATNA NAGOD BRANCH CANAL KM					
	Abstract of Reruwa kalan Minor	N.H. A	r R.D. 1	.310 M.		
S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref.
1	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per	3	4	5	6	7
	relevant clauses of section 300 & 2100 in Ordinary Soil Depth Up to 3 m.	144.663	61	Cum	8824	12.1 I (i)
2	Providing and laying Plain/Reinforced cement concrete in open foundation including form work shuttering etc. complete as per drawing and technical specifications and as per relevant clauses of sections 1500, 1700 & 2100 with .) PCC GRADE M15	59.704	4617	Cum	275652	12.6
3	Supplying, fitting and placing HYSD bar reinforcement in super- structure complete as per drawing and technical specifications as per relevant clauses of section 1600 FE550	2.157	82810	tonne	178607	14.4
4	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC GRADE M 25	29.680	6286	Cum.	186569	14.1 (B) (i 2
5	Providing weep holes in Brick masonry/Plain/Reinforced concrete abutment, wing wall/return wall with 100 mm dia AC pipe, extending through the full width of the structure with slope of 1V:20H towards drawing foce. Complete as per drawing and Technical specifications	7.200	185	Rm	1332	13.9
6	Providing and Laying Reinforced Cement Concrete Pipe NP4/prestrssed concrete pipe on first class bedding in single row. Providing and Laying Reinforced cement concrete pipe NP4/prestrssed concrete pipe for culverts on first class bedding of granular material (cost of bedding included) in single row including fixing collar with cement mortar 1:2 but excluding excavation, protection works, backfilling, concrete and masonry works in head walls and parapets. 1200 mm Dia Pipe	30.000	9544	Rm	286320	9.2 B
7	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 inBack Filling in Marshy Foundation Pits	98.042	308	Cum	30197	12.1 (Vi
8	Embankment Construction with Material Obtained from Borrow Pits Construction of embankment with approved material having CBR>7 obtained from borrow pits with all lifts and leads, transporting to site, spreading, grading to required slope and compacting to meet requirement of table 300-1, 300-2 and as per relevent clauses of section-300.	375.000	155	Cum.	58125	3.13

S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref.
9	Granular Sub-base with Well Graded Material (CBR>30 or more) (Table:- 400-1 & Table 400-2) Construction of granular sub-base by providing well graded material like natural sand crushed gravel or crushed stone having CBR >30, spreading in uniform layers with motor grader on prepared surface, mixing by mix in place method with rotavator or plant mix method at OMC, and compacting with vibratory rollers of 80 to 100 kN static weight to achieve the desired density, complete as per Clause 401 of Specification.	150.000	934	Cum	140100	4.1
10	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	75.000	1347	Cum	101025	4.8 i (a)
11	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper	56.250	1250	Cum.	70313	4.8 ii (a)
	Total				1337064	
	Say				13.37	Lakhs
	Add 18% GST				2.4067	- 13 6
	Total Amount				15.7774	Lakhs

Assistant Engineer (F-17...)
N.D. Division No. 7
Satna (M.P.)

Executive Engineer
N.D. Division No. 7
Satna (M.P.)

			ESTIM	ATE				
4	RERUWA	KALAN	MINOR	N.H. AT R.D.	1310	M.		
UCSR	Item of Work	Nos.	L	В	H/D	Quantity	REN	MARKS
12.1	Earth work in excavation of foundar specification, including setting out, and other deleterious matter, dress 300 & 2100 in	construct	ion of sho	ring and bracing, re	moval o	f stumps of section	AVG. top	Excavation G.L.
	Head Wall U/S	1	4.82	2.35	2.19	24.84	334.000	331.809
	Head Wall D/S	1	4.82	2.35	2.19	24.84	334.000	331.80
	Pipe Barral	1	25.70	2.83	1.31	94.99	334.000	332.69
	Total	-	25.76			144.663		Cum.
1.60	Ordinary Soil Depth Up to 3 m.					144.663		Cum.
1 (i)						144.003		-
II (i)	Ordinary Rock Depth Up to 3 m.					0.000		Cum.
III	Hard Rock (Requred Blasting)					0.000		Cum.
12.6	Providing and laying Plain/Reinforce work shuttering etc. complete as pe clauses of sections 1500, 1700 & 23	er drawin	g and tech) PCC GRA	nical specifications DE M15	and as p	er relevant		
De la la	Head Wall U/S	1	3.82	2.35	0.10	0.899		-
	Head Wall D/S	1	3.82	2.35 1.83	0.10	14.645		
	Pipe Barral	1	26.68 3.72	2.25	0.30	2.514		
	Head Wall U/S 1 Step	1		(0.525+1.950)/2	3.141	13.31		
	Head Wall U/S 2 Step	1	3.424		3.141			
	Pipe Deduction in Head wall U/s	-1	1.540	Area=1.188	0.20	-1.830 2.514	-	
	Head Wall D/S 1 Step	1	3.72	2.25	0.30 3.141	13.31		
	Head Wall D/S 2 Step	1	3.424	(0.525+1.950)/2	5.141	-1.830	-	
	Pipe Deduction in Head wall D/s Half Pipe Barral	-1	1.540 27.01	Area=1.188	0.45	21.998		_
	Deduct Pipe in half cradel	-1	27.01	Area=0.428	0.43	-11.562		
	Coller Joint	11	1.83	0.30	1.085	6.552		
	Deduct Pipe Barral	-11	0.30	Area=1.138		-3.755		
	Parapet kerb	2	3.42	0.53	0.23	0.809		
	Perapet Wall	2	3.42	0.30	0.60	1.23		
	Total					59.704		Cum.
14.4	Supplying, fitting and placing HYSD drawing and technical specification	bar reinf ns as per i	orcement relevant cla	in super- structure auses of section 16	complet 00 FE550	e as per		
	Head Wall	The state of						
- 73	Main Bar 10 MM Dia @ 200 mm	24	4.186		0.617	61.99		
	Disty Bar 8 MM Dia @ 200 mm	40	2.12	Heyer	0.395	33.50		1
	Total					95.48		
	2 Nos Headwall					190.96		
	Slab							
125	Main Bar 12 MM Dia @ 150 mm	384	3.0		0.888	1022.98		
	Disty Bar 12 MM Dia @ 300 mm	20	28.722		0.888	510.10		
	Crash Barrier							
EZ III.	Main Bar 12 MM Dia @ 150 mm	20	3.104		0.888	55.13		
	Main Bar 12 MM Dia @ 150 mm	20	1.93		0.888	34.28		
	Disty Bar 10 MM Dia @ 150 mm	_	2.79		0.617	30.99		
	Total					120.39		
	2 Nos Crash Barrier					240.78		

tem No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS
	Wearing coat		37.3				
	Main Bar 8 MM Dia @ 200 mm	15	8.32		0.395	49.30	
	Disty Bar 8 MM Dia @ 200 mm	43	2.75		0.395	46.71	
	Total				TOR	96.00	
	2 Nos Wearing coat					192.01	
			150			2156.832	Kg.
	Grand Total					HENCE COLUMN TO THE PARTY OF TH	1.6.
(i) 2	Providing and Placing Reinforced/Pr reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC	echnical	Specificatio				
	Top Slab	1	2.83	28.80	0.30	24.452	
	Crash barrier	2	2.83	Area=.2936		1.662	STAP BULLE
	Wearing coat	2	2.83	8.40	0.07	3.566	
	Total					29.680	Cum
9.2(B)	NP4/prestrssed concrete pipe for control bedding included) in single row included excavation, protection works, back parapets.	uding fixi	ng collar wi	th cement morta	er 1:2 but	excluding	
	1000 MM Dia NP4 PIPe	12	2.50			30.000	RM.
	Weep Hole Total	8	0.90			7.200 7.200	RM
12.1 (Vi)		tion of st constructions of side	ructures as tion of shor	ring and bracing,	removal	7.200 of stumps	RM
12.1 (Vi)	Total Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh	tion of st constructions of side	ructures as tion of shor	ring and bracing,	removal	7.200 of stumps	RM
12.1 (Vi)	Total Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S	tion of st construc sing of sid y Founda	ructures as tion of shor des and bot tion Pits	ring and bracing, tom as per relev	removal of	7.200 of stumps es of section	RM
12.1 (Vi)	Total Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh	tion of st constructions of side y Foundar	ructures as ition of shor des and bot tion Pits	ring and bracing, tom as per relev 0.84	removal cant clause	7.200 of stumps es of section 7.979	RM
12.1 (Vi)	Total Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S	tion of st constructions of side of si	ructures as tion of short des and bottion Pits 3.30 3.30	oing and bracing, tom as per releved 0.84 0.84	2.86 2.86	7.200 of stumps es of section 7.979 7.979	RM
12.1 (Vi)	Total Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral	tion of st constructions of side of si	ructures as ation of short des and bot tion Pits 3.30 3.30 1.00	one and bracing, tom as per releved 0.84 0.84 25.70	2.86 2.86 1.53	7.200 of stumps as of section 7.979 7.979 39.321	RM
12.1 (Vi)	Total Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total	tion of st constructions of side of si	ructures as action of short des and bot tion Pits 3.30 3.30 1.00 1.83 erted Road	0.84 0.84 25.70 28.29	2.86 2.86 1.53	7.200 of stumps as of section 7.979 7.979 39.321 42.763	
12.1 (Vi)	Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total Embankment Construction with M Construction of embankment with pits with all lifts and leads, transpocompacting to meet requirement of	tion of st construction of sing of sing of sing of sing of sing y Foundar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ructures as stion of short des and botton Pits 3.30 3.30 1.00 1.83 erted Road otained from d material hite, spreadi	0.84 0.84 25.70 28.29 m Borrow Pits naving CBR>7 obtang, grading to re	2.86 2.86 1.53 0.83	7.200 of stumps as of section 7.979 7.979 39.321 42.763 98.042 om borrow ope and	
	Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total Embankment Construction with M Construction of embankment with pits with all lifts and leads, transpocompacting to meet requirement 6 300.	tion of st constructions of sing of sing of sing y Foundar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ructures as action of short des and botton Pits 3.30 3.30 1.00 1.83 erted Road otained from d material hite, spreadi 00-1, 300-2	0.84 0.84 25.70 28.29 m Borrow Pits having CBR>7 obtong, grading to relevant and as per relevant and as p	2.86 2.86 1.53 0.83 cained fro quired slovent clause	7.200 of stumps as of section 7.979 7.979 39.321 42.763 98.042 m borrow ape and as of section-	
	Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total Embankment Construction with M Construction of embankment with pits with all lifts and leads, transpocompacting to meet requirement of 300. Embankment Construction	tion of st construction of sing of sing of sing of sing of sing y Foundar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ructures as stion of short des and botton Pits 3.30 3.30 1.00 1.83 erted Road otained from d material hite, spreadi	0.84 0.84 25.70 28.29 m Borrow Pits naving CBR>7 obtang, grading to re	2.86 2.86 1.53 0.83	7.200 of stumps as of section 7.979 7.979 39.321 42.763 98.042 om borrow ope and	
	Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total Embankment Construction with M Construction of embankment with pits with all lifts and leads, transpocompacting to meet requirement of 300. Embankment Construction Total	tion of st constructions of sing of si	ructures as ation of short des and bottion Pits 3.30 3.30 1.00 1.83 erted Road otained from d material hite, spreadi 00-1, 300-2	0.84 0.84 25.70 28.29 m Borrow Pits having CBR>7 obtains, grading to relate and as per relevant as per releva	2.86 2.86 1.53 0.83 cained fro quired slovent clause	7.200 of stumps as of section 7.979 7.979 39.321 42.763 98.042 m borrow ape and as of section- 375.000 375.000	Cum
	Earth work in excavation of foundal specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total Embankment Construction with M Construction of embankment with pits with all lifts and leads, transposed compacting to meet requirement of 300. Embankment Construction Total Granular Sub-base with Well Grace 2) Construction of granular sub-bac crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting to meet requirement of granular sub-bac crushed at OMC, and compacting to meet requirement of granular sub-bac crushed at OMC, and compacting to meet requirement of granular sub-bac crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting to the surface of the surface o	tion of st constructions of sing of sing of sing of sing of sing y Foundar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ructures as stion of short des and botton Pits 3.30 3.30 1.00 1.83 erted Road otained from d material hite, spreadi 00-1, 300-2 100.00 erial (CBR>3 eviding well 8 > 30, spreading place mediatory rollers	0.84 0.84 0.84 25.70 28.29 The Borrow Pits Paving CBR>7 obtong, grading to relevation and as per relevation a	2.86 2.86 1.53 0.83 cained fro quired slovent clause 0.30 e:- 400-1 like naturayers with tor or pla static we	7.200 of stumps as of section 7.979 7.979 39.321 42.763 98.042 m borrow ape and as of section- 375.000 375.000 & Table 400- al sand a motor and mix	Cum
3.13	Earth work in excavation of founda specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total Embankment Construction with M Construction of embankment with pits with all lifts and leads, transpocompacting to meet requirement of 300. Embankment Construction Total Granular Sub-base with Well Grace 2) Construction of granular sub-bac crushed gravel or crushed stone had grader on prepared surface, mixing	tion of st constructions of sing of sing of sing of sing of sing y Foundar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ructures as stion of short des and botton Pits 3.30 3.30 1.00 1.83 erted Road otained from d material hite, spreadi 00-1, 300-2 100.00 erial (CBR>3 eviding well 8 > 30, spreading place mediatory rollers	0.84 0.84 0.84 25.70 28.29 The Borrow Pits Paving CBR>7 obtong, grading to relevation and as per relevation a	2.86 2.86 1.53 0.83 cained fro quired slovent clause 0.30 e:- 400-1 like naturayers with tor or pla static we	7.200 of stumps as of section 7.979 7.979 39.321 42.763 98.042 m borrow ape and as of section- 375.000 375.000 375.000 8 Table 400- al sand a motor and mix aight to	Cum
	Earth work in excavation of foundal specification, including setting out, and other deleterious matter, dres 300 & 2100 inBack Filling in Marsh Head Wall U/S Head Wall D/S Pipe Barral murrum Total Embankment Construction with M Construction of embankment with pits with all lifts and leads, transposed compacting to meet requirement of 300. Embankment Construction Total Granular Sub-base with Well Grace 2) Construction of granular sub-bac crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting to meet requirement of granular sub-bac crushed at OMC, and compacting to meet requirement of granular sub-bac crushed at OMC, and compacting to meet requirement of granular sub-bac crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting to the surface of the surface o	tion of st constructions of sing of sing of sing of sing of sing y Foundar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ructures as stion of short des and botton Pits 3.30 3.30 1.00 1.83 erted Road otained from d material hite, spreadi 00-1, 300-2 100.00 erial (CBR>3 eviding well 8 > 30, spreading place mediatory rollers	0.84 0.84 0.84 25.70 28.29 The Borrow Pits Paving CBR>7 obtong, grading to relevation and as per relevation a	2.86 2.86 1.53 0.83 cained fro quired slovent clause 0.30 e:- 400-1 like naturayers with tor or pla static we	7.200 of stumps as of section 7.979 7.979 39.321 42.763 98.042 m borrow ape and as of section- 375.000 375.000 & Table 400- al sand a motor and mix	Cum

UCSR Item No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS
4.8 i (a)	Water Bound Macadam Providing, I specific sizes to water bound macada hand packing, rolling with vibratory applying and brooming requisite typof coarse aggregate, watering and cospecification.	am spec roller 8- e of scre	ification inclu 10 tonnes in s eening/ bindi	ding spreadin stages to prop ng Materials to	g in uniforr er grade ar o fill up the	n thickness, nd camber, interstices	
	(i) Grading I (63 to 45 mm) (a) Using Screening Type A (13.2 mm Agg.)	1	100.00	7.50	0.10	75.000	
	Total		TELES !			75.000	Cum
4.8 ii (a)	Water Bound Macadam Providing, specific sizes to water bound macad hand packing, rolling with vibratory applying and brooming requisite typof coarse aggregate, watering and cospecification.	am spec roller 8- e of scr	cification inclu 10 tonnes in eening/ bindi	iding spreadin stages to prop ng Materials t	ng in unifor per grade and o fill up the	m thickness, nd camber, interstices	
	(ii) Grading II (53 to 22.4 mm) (a) Using Screening Type B (11.2 mm Agg.)	1	100.00	7.50	0.075	56.250	
	Total					56.250	Cum

Assistant Engineer (F-...)

N.D. Division No. 7

Satna (M.P.)

GOVERNMENT OF MADHYA PRADESH

NARMADA VALLEY DEVELOPMENT AUTHORITY

BARGI DIVERSON PROJECT

NAGOD SATNA BRANCH CANAL FROM RD 55.600KM TO RD 83.00KM INCLUDING DISTRIBUTION SYSTEM

BAMURAHIYA MINOR N.H. CROSSING AT RD - 1575 M OFFTAKE FROM 950 M OF ITMA MINOR

Prepared & Submitted By:

OFFSHORE INFRASTRUCTURES
LIMITED, MUMBAI

	Desig	n of BAMUR	AHIYA MINOR N.H. CROSSING AT R	D -	1575 M
CANA	AL DATA :-				
1	Full Supply Discharge		(Q)	=	0.6552 Cumec
2	Bed Width		(B.W.)	=	0.45 M
3	Full Supply Depth		(F.S.D.)	=	0.5 M
4	Free Board		(F.B.)	=	0.45 M
5	Top Width of Bank :	Left	(10)	=	1.25 M
	rop mourer bank.	Right		=	1.25 M
6	Bed Slope	Mgnc		_	1 in 350
7	Side Slope :	Inner Slope	(1)	_	1.50 :1
,	side slope.	Outer Slope	(0)	_	2.00:1
8	Velocity	Outer Slope	(V)	=	1.228 M/Sec
9	Manning's "N"	Lined	(n)	_	0.018
,	Maining 3 IV	Unlined	(n)	_	0.025
10	Canal Bed Level	Offined	(C.B.L.)	-	322.843 M
10	The second contract of		(F.S.L.)		323.343 M
11	Full Supply Level			=	323.793 M
12	Top Bank Level		(T.B.L.)	-	323.793 IVI
BRID	GE DATA :-				
1	Formation Level		(F.R.L.)	=	324.215 M
2	Ground Level		(G.L.)	=	322.770 M
3	Clear Width of Roadway			=	29.1 M
4	Pipe Length			=	30 M
5	Extra Beam Width			=	0.000 M
6	Extra Beam Height			=	0.000 M
7	Extra Beam Length			=	0.000 M
8	Extra Beam Rest on Pipe			=	0.000 M
9	Overall Length			=	30.000 M
10	Pipe Invert Level in U/s			=	321.843 M
11	Pipe Invert Level in D/s			=	321.810 M
12	D/s CBL		(C.B.L.)	=	322.743 M
13	D/s FSL		(F.S.L.)	=	323.243 M
14	D/s TBL		(T.B.L.)	=	323.693 M
	BT RL		(1,5,2,)	. =	320.64 M
13	DIAL				320.04 IVI
DESI	GN OF PIPE FOR DISCHA	RGE :-			
X- se	ctional area of Canal water	way			
	Bed Width			=	0.45 M
	Full Supply Depth			=	0.50 M
	Water way (A)			=	$(0.45 + 1.5 \times 0.5) \times 0.5$
				=	0.60 Sq mts
	Velocity V ₁			=	1.228 M/Sec
Wate	er in pipe will run as open o	channel flow			
wate	i in pipe wiii run us open c	and mer now	Assume diameter of pipe	=	1.00 M
		-1			0.790 SqM
	e X- sectional area of one			=	0.790 SqiM 0.016
	ning's rougosity coefficient	for RCC Pipe		=	
The	oipe invert level in u/s			=	CBL - Depression of pipe
				=	322.843 - 1
			1	=	321.843 M
	//	11	OFFSHOP MM		222 042 14
	//	11	(C.B.L.)	=	322.843 M
	11	1)	(F.S.L.)	=	323.343 M
		11	NA POTRUCTURES		
		//	150		
	11	//	PUCTU		64
	0.115	0.115	()		()// _
	1.00	0.115	-		
			g_b Magineer	AS	ssistant Engineer (F!.

Assistant Engineer (F-.!.(...)
N.D. Division No. 7
Satna (M.P.)

Hence net area of one pipe = Total Area 0.790 0.790 sqm No. of rows of pipe = 1 By providing one row of pipe, X-sectional area 0.790 sgm Full Supply Discharge = 0.655 Cumecs Hence Velocity through pipe to pass full discharge $V_2 = (0.6552 / 0.79)$ 0.829 M/Sec Total perimeter of one pipe $2\pi r$ 3.142 M 3.142 M Hydraulic mean depth of pipe not running full A/P (0.79 / 3.142)0.251 M R^{2/3} 0.398 (V x n) Slope 0.829 x 0.016 0.398 0.0011 Slope 909 Say 30.00 M 30.00 909 0.033 M Drop in plpe

HEAD LOSS :-

Length of Pipe

3.1.2 Head Loss C Highest value of the following two is adopted

(1) By unwins for =
$$(1+f_1+f_2*L/R)V^2$$
 $2g$
where = 0.505 & f2 = a(1+b/R)

where a & b are as follows (5.11@ E-In-C70/1)
For concrete 0.00316 and b = 0.03

R A/P = 0.251 m
f2 = #REF! = 0.0035

L = Length ofPipe = 30.000 2
& her = 1 + 0.505 + 0.0035 × (30/0.251) × 0.83
2 × 9.81

= 0.0670 m

Head loss as per drop of canal = 30 / 909
Provided Head Loss in Lsec = 0.1 M

Difference in head loss calculated and provided = 0.067-0.033
= 0.034 M

As there is provision of 0.1m head loss in canal L -section, Hence OK.

SCOUR DEPTH :-

In this case however the canal is lined scour depth need not be calculated. However calculations are given as below:-

when:-

$$d = 1.34 \left(\frac{D_b^2}{K_{sf}} \right)^{1/3}$$

d_{sm} = Mean Depth of Scour

D_b = The design Discharge for Foundation per Meter width of effective waterway.

K_{ef} = Silt Factor fro a representative sample of bed material obtained up to the level of anticipated deepest scour

 $K_{sf} = 1.76 d_m$

d_m = Weighted mean diameter in mm.

Particle Size = Heavy Sand

$$d_{m} = 1.29$$
 $K_{sf} = 1.999$
 $D_{b} = 0.336$

for Abutment

$$d = 1.34 \frac{0.336 \times 0.336}{1.999} = 0.384 \text{ M}$$
Max Scour Depth (D_m) = 1.27 x d_{sm} = 1.27 x 0.384 = 0.49 M

In the present case, F.S.L. = 323.343 M

Hence,

Maximum depth of sour is up to =	323.343	-	0.49	=	322.855 M
Below G.L. the found	ation is provided	1.00	M below G.L.	=	321.770 M
Below Canal Bed, the found	ation is provided	1.20	M below INVERT LE	=	320.643 M
Foundation Level of Head Wall =				=	320.643 M
					Hence Safe

DESIGN OF HEAD WALL-

The design of Head wall is not done. Its width has been adopted as per chart for wing walls in E-in-C publication 70/1

1	Effective height of wall up to top of foundation level	=	324.215 - 320.943
	- Nematical Control - New York (No. 1)	=	3.272 M
2	B/H factor as per E in C publication	=	0.65
3	B/H Angle	=	26.33°
4	Width required	-	2.13 M
5	Width provided	=	2.15 M

DESIGN OF WELL IN U/S:

Area of waterway = 0.600 Sqm

Area required for well = 1.25 x Area of waterway

= 1.25 x 0.600

= 0.750 sqm

Min. distance required of fall wall = 1.25D + (h/4) As per E-in-C 70/1 where, D = Depth of Water

where, D = Depth of Water

h = CBL of canal -U/S invert level of pipe

D = 0.50 m h = 322.843 -321.543 = 1.30 m

0.95 m

0.57 Sqm

Min. distance required of fall wall = $(1.25 \times 0.5) + (1.30 / 4)$

Dia. of well provided = width of pipe = 1.20 mArea of well provided = 3.14×1.2^2 4×2

itance of well wall from U/s = 0.60 + 1.00 = 1.60 m

> 0.95 m HENCE OK

Depth of water cushion

Provide depth of water cushion with R.C.C. floor = 0.30 m

Floor thickness of well = $\sqrt{\text{Depth of water} + \text{Drop}}$

= V(4.395 + 4.26)

= 2.94 feet = 0.90 m

Provide Floor thickness of well = 0.30 m

i.e. provide top floor thickness with R.C.C. 1:2:4= 0.30 m

& remaining floor thickness with C.C. 1:3:6 = 0.30 m

Foundation level of U/S well = U/S Invert level of pipe - water cushion - Floo thickness of well

= 321.843 -0.30 -0.30 -0.30

= 320.943 m

Provide Foundation level of well = 321.843 -1.20 (1.20m below pipe invert)

Provide Foundation level of well = 320.643 m

DESIG OF NOTCH: Providing Trapezoidal type notch

Notch	Width	= (0.224 X Q	X(WATER	DEPTH)	3/2	
		=	0.221 x 2	3.14	1.65	3/2	
		-	2.41	feet			
		-	0.74	m			
	say	-	0.8	m			
th of Notch	=	Bottom wid	dth of notch	+ 2d' TAN α			
	=	2.62	+2 x 1.65		XMQ -	5/2	
	=	2.62	+2 x 1.65	x 0.055	x 23 x	x 1.65	-5/2
	=	3.83	feet				
	=	1.17	m				
	=	1.2	m				

pitching in outer slope of canal is to be provided.

scharge through not = 4.46 X notch width x FSD 1.5 = 4.46 x 2.62 x 1.65 1.5

= 0.702 cumecs

> 0.655 cumecs

TURES ON

Sub Engineer N.D. Division No. 7 Satna (M.P.) Assistant Engineer (F-.\(^1\)_.)

N.D. Division No. 7

Satna (M.P.)

1	Abstract of Itma Minor N.I	H. AT R.D	. 1575	M.		
S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref
1	2	3	4	5	6	7
•	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bridge, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 in					
	Ordinary Soil Depth Up to 3 m.	194.888	61	Cum	11888	12.1 I (i)
2	Providing and laying Plain/Reinforced cement concrete in open foundation including form work shuttering etc. complete as per drawing and technical specifications and as per relevant clauses of sections 1500, 1700 & 2100 with .) PCC GRADE M15	91.687	4617	Cum	423319	12.6
3	Supplying, fitting and placing HYSD bar reinforcement in super- structure complete as per drawing and technical specifications as per relevant clauses of section 1600 FE550	2.221	82810	tonne	183892	14.4
4	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC	1.473	5674	Cum.	8357	14.1 (A) (i
5	Providing and Placing Reinforced/Prestressed cement concrete in super-structure e/x reinforcement as per drawing and Technical Specification and as per relevant clauses of sections 1500, 1700 and 2300 in RCC GRADE M 25	29.680	6286	Cum.	186569	14.1 (B) (
6	Providing weep holes in Brick masonry/Plain/Reinforced concrete abutment, wing wall/return wall with 100 mm dia AC pipe, extending through the full width of the structure with slope of 1V:20H towards drawing foce. Complete as per drawing and Technical specifications	7.200	185	Rm	1332	13.9
7	Providing and Laying Reinforced Cement Concrete Pipe NP4/prestrssed concrete pipe on first class bedding in single row. Providing and Laying Reinforced cement concrete pipe NP4/prestrssed concrete pipe for culverts on first class bedding of granular material (cost of bedding included) in single row including fixing collar with cement mortar 1:2 but excluding excavation, protection works, backfilling, concrete and masonry works in head walls and parapets. 1200 mm Dia Pipe	30.000	9544	Rm	286320	9.2 B
8	Earth work in excavation of foundation of structures as per drawing and technical specification, including setting out, construction of shoring and bracing, removal of stumps and other deleterious matter, dressing of sides and bottom as per relevant clauses of section 300 & 2100 inBack Filling in Marshy Foundation Pits	108.770	308	Cum	33501	12.1 (V

S.No.	Description	Qty.	Rate	Unit	Amount	UCSR Ref.
9	Embankment Construction with Material Obtained from Borrow Pits Construction of embankment with approved material having CBR>7 obtained from borrow pits with all lifts and leads, transporting to site, spreading, grading to required slope and compacting to meet requirement of table 300-1, 300-2 and as per relevent clauses of section-300.	375.000	155	Cum.	58125	3.13
10	Granular Sub-base with Well Graded Material (CBR>30 or more) (Table:- 400-1 & Table 400-2) Construction of granular sub-base by providing well graded material like natural sand crushed gravel or crushed stone having CBR >30, spreading in uniform layers with motor grader on prepared surface, mixing by mix in place method with rotavator or plant mix method at OMC, and compacting with vibratory rollers of 80 to 100 kN static weight to achieve the desired density, complete as per Clause 401 of Specification.	150.000	934	Cum	140100	4.1
11	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	75.000	1347	Cum	101025	4.8 i (a)
12	Water Bound Macadam Providing, laying, spreading and compacting stone aggregates of specific sizes to water bound macadam specification including spreading in uniform thickness, hand packing, rolling with vibratory roller 8-10 tonnes in stages to proper grade and camber, applying and brooming requisite type of screening/ binding Materials to fill up the interstices of coarse aggregate, watering and compacting to the required density as per clause 404 of specification.	56.250	1250	Cum.	70313	4.8 ii (a)
	Total Say Add 18% GST				1504740 15.05 2.7085	Lakhs
	Total Amount				17.7559	Lakhs

Assistant Engineer (F-./-)
N.D. Division No. 7
Satna (M.P.)

Executive Engineer
N.D. Division No. 7
Satna (M.P.)

			ESTIN	IATE				
*	ITMA	MINC	R N.H.	AT R.D. 1575	M.			
UCSR Item No.	Item of Work	Nos.	_	В	H/D	Quantity		MARKS
12.1	Earth work in excavation of foundation specification, including setting out, cand other deleterious matter, dressing 300 & 2100 in	onstruct	tion of sho	ring and bracing, re	moval of		AVG. top	Excavation G.L.
	Head Wall U/S	1	5.30	2.55	2.23	30.10	322.770	320.543
	Well Wall U/S	1	3.14	2.75	2.13	18.38	322.770	320.64
	Head Wall D/S	1	5.30	2.55	2.23	30.10	322.770	320.54
	Well Wall D/S	1	3.14	2.75	2.13	18.38	322.770	320.64
	Pipe Barral	1	25.30	2.83	1.34	96.23	322.770	321.42
	U/s Key wall	1	2.10	0.60	0.63	0.79	322.770	322.14
	D/s Key wall	1	2.10	0.60	0.73	0.92	322.770	322.04
	Total	1	2.10	0.00	0.75	194.888	322.770	Cum.
	Total							Cuiii.
1 (i)	Ordinary Soil Depth Up to 3 m.					194.888		Cum.
II (i)	Ordinary Rock Depth Up to 3 m.					0.000		Cum.
III	Hard Rock (Requred Blasting)					0.000		Cum.
12.6	Providing and laying Plain/Reinforce work shuttering etc. complete as per clauses of sections 1500, 1700 & 210	r drawin	g and tech	nical specifications				
	Head Wall U/S	1	4.30	2.55	0.10	1.097		
Oleman I	Head Wall D/S	1	4.30	2.55	0.10	1.097		
-	Pipe Barral	1	26.33	1.83	0.30	14.453	1023	Tay- Ita
	Head Wall U/S 1 Step	1	4.20	2.45	0.30	3.087		
	Head Wall U/S 2 Step	1	3.900	(0.525+2.150)/2	3.272	17.07		File
	Pipe Deduction in Head wall U/s	-1	1.455	Area=1.188		-1.729		
	Head Wall D/S 1 Step	1	4.20	2.45	0.30	3.087		
	Head Wall D/S 2 Step	1	3.900	(0.525+2.150)/2	3.272	17.07		
	Pipe Deduction in Head wall D/s	-1	1.455	Area=1.188	11.7	-1.729		
	Half Pipe Barral	1	26.69	1.83	0.445	21.738		
	Deduct Pipe in half cradel concrerte	-1	26.69	Area=0.388		-10.357		
	Coller Joint	11	1.83	0.30	1.085	6.552		
	Deduct Pipe Barral	-11	0.30	Area=1.138		-3.755		
	Parapet kerb	2	3.90	0.53	0.23	0.921		
	Perapet Wall	2	3.90	0.30	0.68	1.58		
	U/s & D/s well wall Circular pcc	2	3.14	2.65	0.30	4.99		
	U/s & D/s well wall Lift	2	3.93	0.78	2.63	15.98		
	U/s & D/s Notch deduction inwell wall Lift	-2	0.50	1.00	0.50	-0.50		
	U/s & D/s Key wall pcc	2	2.10	0.60	0.20	0.50		
	U/s & D/s Key wall	2	1.80	0.30	0.50	0.54		
	Total					91.687		Cum
14.4	Supplying, fitting and placing HYSD to drawing and technical specifications							
	Head Wall							
-	Main Bar 10 MM Dia @ 200 mm	17	4.392		0.617	46.07		
87E =	Disty Bar 8 MM Dia @ 200 mm	21	3.19		0.395	26.46		
	THE SHARE SH					72.53	e com	
itt-leda:	Total					12.00		

tem No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARK	S
	Slab							
	Main Bar 12 MM Dia @ 150 mm	384	3.0	News Tellin	0.888	1022.98		
	Disty Bar 12 MM Dia @ 300 mm	20	28.722		0.888	510.10		
	Crash Barrier		15					
	Main Bar 12 MM Dia @ 150 mm	20	3.104		0.888	55.13		
	Main Bar 12 MM Dia @ 150 mm	20	1.93		0.888	34.28		
	Disty Bar 10 MM Dia @ 150 mm	18	2.79		0.617	30.99		
	Total					120.39		
-	2 Nos Crash Barrier				1000	240.78		
-	Wearing coat							
	Main Bar 8 MM Dia @ 200 mm	15	8.32		0.395	49.30		
	Disty Bar 8 MM Dia @ 200 mm	43	2.75		0.395	46.71		
	Total					96.00		
	2 Nos Wearing coat					192.01		
	U/s & D/s well							
	Main Bar 10 MM Dia @ 300 mm	14	2.85		0.617	24.58		
	Disty Bar 8 MM Dia @ 300 mm	9	3.828		0.395	13.61		
	Main Bar 12 MM Dia @ 300 mm	10	0.94		0.888	8.35		
	Disty Bar 12 MM Dia @ 300 mm	10	0.938		0.888	8.33		
3 1 119	Total	120				54.86		
F	2 Nos wall well					109.72		
13 15 18	Grand Total					2220.645	Market 1	Kg.
(i) 2	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC U/s RCC Flooring of well			0.781	0.300	0.74		
	D/s RCC Flooring of well	1	3.14	0.781	0.300	0.74		
	Total					1.473		Cum.
	Providing and Placing Reinforced/Pr	ractrosse	d coment					
(i) 2	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC	Technical	l Specificati					
	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC	Technical	l Specificati					
	reinforcement as per drawing and T	echnical C GRADI	l Specificati E M 25	ion and as per relev	ant clau	ses of		
	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC Top Slab	C GRADI	I Specificati E M 25 2.83	on and as per relev	ant clau	ses of 24.452		
	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC Top Slab Crash barrier	C GRADI	2.83 2.83	28.80 Area=.2936	o.30	24.452 1.662		Cum
(i) 2	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC Top Slab Crash barrier Wearing coat Total Providing and Placing Reinforced/Providing and Placing Reinforced/Providing and Placing Reinforced/Providing Reinforced/Prov	C GRADI 1 2 2 restresse	2.83 2.83 2.83 2.83 2.83	28.80 Area=.2936 8.40 concrete in super-s	0.30 0.07	24.452 1.662 3.566 29.680 e/x		Cum
(i) 2 4.1 (C) (i	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC Top Slab Crash barrier Wearing coat Total Providing and Placing Reinforced/Preinforcement as per drawing and T	C GRADI 1 2 2 restresse	2.83 2.83 2.83 2.83 2.83	28.80 Area=.2936 8.40 concrete in super-s	0.30 0.07	24.452 1.662 3.566 29.680 e/x		Cum
4.1 (C) (i	reinforcement as per drawing and T sections 1500, 1700 and 2300 in RC Top Slab Crash barrier Wearing coat Total Providing and Placing Reinforced/Preinforcement as per drawing and T sections 1500, 1700 and 2300 in RC	restresse Technical 2 2 2 restresse Technical C GRADI	2.83 2.83 2.83 2.83 2.83 2.83 2.83 2.83	28.80 Area=.2936 8.40 concrete in super-sion and as per relevant to the super-sion and as per relevant to the super-sion and t	0.30 0.07 tructure vant clause prete pipe ar mater 1:2 but	24.452 1.662 3.566 29.680 e/x ses of 0.00 pipe on first exial (cost of excluding		

tem No.	Item of Work	Nos.	L	В	H/D	Quantity	REMARKS
13.9	Providing weep holes in Brick masor wall with 100 mm dia AC pipe, exte 1V :20H towards drawing foce. Com	nding thr	ough the fu	ll width of the s	tructure w	ith slope of	
	Weep Hole	8	0.90			7.200	
	Total					7.200	RM
12.1 (Vi)	Earth work in excavation of foundar specification, including setting out, and other deleterious matter, dress 300 & 2100 inBack Filling in Marshy	construc	tion of shori les and bott	ing and bracing,	removal o		
	Head Wall U/S	1	3.77	0.91	2.97	10.230	
100	Head Wall D/S	1	3.77	0.91	2.97	10.230	
	Pipe Barra!	1	1.00	25.40	1.53	38.862	
	murrum	1	1.83	28.18	0.96	49.449	
	Total					108.770	Cum.
		Dive	rted Road				
3.13	pits with all lifts and leads, transport compacting to meet requirement of 300.	ting to si f table 30	te, spreadin 00-1, 300-2	ng, grading to re and as per relev	ent clause	es of section-	
	Embankment Construction	1	100.00	12.50	0.30	375.000	
	Total						Cum
	Granular Sub-base with Well Grad 2) Construction of granular sub-bas crushed gravel or crushed stone ha	e by proving CBR	viding well g >30, spread	graded material ding in uniform	like natura layers with	al sand motor	Cum
4.1	Granular Sub-base with Well Grad 2) Construction of granular sub-base	e by proving CBR by mix is with vibra	viding well g >30, spread n place met tory rollers	graded material ding in uniform hod with rotava of 80 to 100 kN	like natura layers with tor or plan static weig	& Table 400- al sand motor at mix	Cum
4.1	Granular Sub-base with Well Grad 2) Construction of granular sub-base crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting wachieve the desired density, complete the compacting of	e by proving CBR by mix in with vibratete as pe	viding well g >30, spread n place met tory rollers r Clause 401	graded material ding in uniform hod with rotava of 80 to 100 kN	like natura layers with tor or plan static weig	& Table 400- al sand motor at mix	
4.1	Granular Sub-base with Well Grad 2) Construction of granular sub-base crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting vachieve the desired density, complements of GSB 200 mm thick Total	e by proving CBR by mix in vith vibrate as pe	viding well g >30, spread n place meti tory rollers r Clause 401	graded material ding in uniform hod with rotava of 80 to 100 kN 1 of Specificatio 7.50	like natura layers with stor or plar static weign.	& Table 400- al sand motor at mix ght to	Cum
4.1 4.8 i (a)	Granular Sub-base with Well Grad 2) Construction of granular sub-base crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting vachieve the desired density, complete GSB 200 mm thick	le by proving CBR by mix is vith vibrate as per laying, sidam spectrum of screen spectrum	>30, spread n place metitory rollers r Clause 403 100.00 preading an cification ince 10 tonnes in	graded material ding in uniform hod with rotava of 80 to 100 kN 1 of Specificatio 7.50 Ind compacting s cluding spreadir n stages to prop ding Materials t	like natural ayers with stor or plan static weigh. 0.20 tone aggreggin unifor over grade a o fill up the	Stable 400- al sand motor at mix ght to 150.000 150.000 gates of m thickness, and camber, e interstices	
	Granular Sub-base with Well Grad 2) Construction of granular sub-base crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting wachieve the desired density, complements of GSB 200 mm thick Total Water Bound Macadam Providing specific sizes to water bound macade hand packing, rolling with vibrators applying and brooming requisite ty of coarse aggregate, watering and	e by proving CBR by mix in with vibra ete as per laying, sidam specy roller 8-recompact	>30, spread n place metitory rollers r Clause 403 100.00 preading an cification ince 10 tonnes in	graded material ding in uniform hod with rotava of 80 to 100 kN 1 of Specificatio 7.50 Ind compacting s cluding spreadir n stages to prop ding Materials t	like natural ayers with stor or plan static weigh. 0.20 tone aggreggin unifor over grade a o fill up the	Stable 400- al sand motor at mix ght to 150.000 150.000 gates of m thickness, and camber, e interstices	
	Granular Sub-base with Well Grad 2) Construction of granular sub-base crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting wachieve the desired density, complements of GSB 200 mm thick Total Water Bound Macadam Providing, specific sizes to water bound macahand packing, rolling with vibrators applying and brooming requisite ty of coarse aggregate, watering and specification. (i) Grading I (63 to 45 mm) (a) Usin Screening Type A (13.2 mm Agg.)	le by proving CBR by mix is vith vibrate as per laying, sidam special roller 8-recompact	yiding well g >30, spread n place metitory rollers r Clause 401 100.00 preading an cification ince 10 tonnes in eening/ bind ing to the re	graded material ding in uniform hod with rotava of 80 to 100 kN 1 of Specification 7.50 and compacting scluding spreading stages to propiding Materials to equired density 7.50	like natural ayers with stor or plan static weighn. 0.20 tone aggreen in unifor or grade a of ill up the as per clau 0.10	Stable 400- al sand motor at mix ght to 150.000 150.000 150.000 gates of m thickness, and camber, e interstices ase 404 of 75.000	
	Granular Sub-base with Well Grad 2) Construction of granular sub-base crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting wachieve the desired density, complemented of GSB 200 mm thick Total Water Bound Macadam Providing, specific sizes to water bound macahand packing, rolling with vibratory applying and brooming requisite ty of coarse aggregate, watering and specification. (i) Grading I (63 to 45 mm) (a) Usin Screening Type A (13.2 mm Agg.) Total Water Bound Macadam Providing specific sizes to water bound macahand packing, rolling with vibratory specific sizes to water bound macahand packing, rolling with vibratory and packing, rolling with vibratory water bound macahand packing, rolling with vibratory water bound macahand packing, rolling with vibratory	le by proving CBR by mix is with vibral ete as per letter	yiding well g >30, spread n place metitory rollers r Clause 401 100.00 preading an cification ince 10 tonnes in eening/ bind ing to the re 100.00 preading an cification ince 10 tonnes in eening/ bind preading an cification ince 10 tonnes in eening/ bind preading an	graded material ding in uniform hod with rotava of 80 to 100 kN 1 of Specification 7.50 and compacting scluding spreadir notages to properly ding Materials to cluding spreadir notages to properly ding Materials to cluding spreadir notages to properly ding Materials to grade more ding Materials to grade more ding Materials to properly ding Mate	like natural ayers with stor or plan static weighn. 0.20 tone aggreggin unifor our grade at ofill up the aggregate at ofill up the aggregate aggr	Stable 400- al sand motor at mix ght to 150.000 150.000 150.000 gates of m thickness, and camber, e interstices ase 404 of 75.000 gates of m thickness, and camber, e interstices are interstices are interstices are interstices and camber, e interstices	Cum
4.8 i (a)	Granular Sub-base with Well Grad 2) Construction of granular sub-base crushed gravel or crushed stone has grader on prepared surface, mixing method at OMC, and compacting wachieve the desired density, complemented with the desired density, complemented with the desired density of coarse aggregate, watering and specific sizes to water bound maca hand packing, rolling with vibratory applying and brooming requisite ty of coarse aggregate, watering and specification. (i) Grading I (63 to 45 mm) (a) Usin Screening Type A (13.2 mm Agg.) Total Water Bound Macadam Providing specific sizes to water bound maca hand packing, rolling with vibratory applying and brooming requisite ty of coarse aggregate, watering and of coarse aggregate, watering and	le by proving CBR by mix is with vibral ete as per letter	yiding well g >30, spread n place metitory rollers r Clause 401 100.00 preading an cification ince 10 tonnes in eening/ bind ing to the re 100.00 preading an cification ince 10 tonnes in eening/ bind preading an cification ince 10 tonnes in eening/ bind preading an	graded material ding in uniform hod with rotava of 80 to 100 kN 1 of Specification 7.50 and compacting scluding spreadir notages to properly ding Materials to cluding spreadir notages to properly ding Materials to cluding spreadir notages to properly ding Materials to grade more ding Materials to grade more ding Materials to properly ding Mate	like natural ayers with stor or plan static weighn. 0.20 tone aggreggin unifor our grade at ofill up the aggreggin unifor our grade at ofill up the aggreggin unifor our grade at ofill up the aggregate agg	Stable 400- al sand motor at mix ght to 150.000 150.000 150.000 gates of m thickness, and camber, e interstices ase 404 of 75.000 gates of m thickness, and camber, e interstices ase 404 of	Cum

Assistant Engineer (F-...)

N.D. Division No. 7

Satna (M.P.)